首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
λ取何值时,非齐次线性方程组①有唯一解、②无解、③有无限多个解?并在有无限多解时求其通解.
λ取何值时,非齐次线性方程组①有唯一解、②无解、③有无限多个解?并在有无限多解时求其通解.
admin
2021-02-25
52
问题
λ取何值时,非齐次线性方程组
①有唯一解、②无解、③有无限多个解?并在有无限多解时求其通解.
选项
答案
方法一:用初等变换的方法. [*] ①当λ≠1且λ≠一2时R(A)=R(A,b)=3,方程组有唯一解. ②当λ=一2时,R(A)=2<R(A,b)=3,方程组无解. ③当λ=1时,R(A)=R(A,b)=1<3,因此方程组有无限多个解. 方法二:系数矩阵行列式|A|=[*]=(λ—1)
2
(λ+2),因此 ①当λ≠1,λ≠一2时,方程组有唯一解; ②当λ=一2时,有(A,b)=[*] 因此R(A)=2<R(A,b)=3,方程组无解; ③当λ=1时,(A,b)→[*],则R(A)=R(A,b)=1.方程组有无限多个解. 当λ=1时,同解方程组为x
1
=一x
2
—x
3
+1,故通解为 [*],其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ka84777K
0
考研数学二
相关试题推荐
设f(x)为连续函数,试证明:若f(x)为奇函数,则f(x)的一切原函数均为偶函数;若f(x)为偶函数,则有且仅有一个原函数为奇函数.
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
,求A的全部特征值,并证明A可以对角化.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
微分方程y〞+y=-2x的通解为_________.
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
随机试题
影响神经系统发育的最重要的激素是
急性氟中毒没有哪项症状
第1胎孕足月,自娩,体重3500g,胎儿娩出后阴道持续出血10分钟,量达200ml,子宫轮廓清楚。应首选的措施是
关于Word2003的功能,下面说法中正确的是()。
当客户有不良索赔记录后,承保的( )是一项重要的考虑因素。
()是指在特定的可靠性要求下,估计总体参数所落的区间范围,亦即进行估计的全距。
回族是中国少数民族中散居全国、分布最广的民族。它的主要特点有()。
湖笔、徽墨、宣纸、端砚分别产于()。
下列关于盈余公积的说法正确的有()。
Ayoungconsultant’slifeistiring.A(1)_____weekstartsbeforedawnonMonday,witharushtotheairportandaflightto(2)_
最新回复
(
0
)