首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
admin
2019-07-22
31
问题
设A是m×s阶矩阵,B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.
选项
答案
首先,方程组BX=0的解一定是方程组ABX=0的解.令r(B)=r且ξ
1
,ξ
2
,…,ξ
n-r
是方程组BX=0的基础解系,现设方程组ABX=0有一个解η
0
,不是方程组BX=0的解,即Bη
0
≠0,显然ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,若ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性相关,则存在不全为零的常数k
1
,k
2
,…,k
n-r
,k
0
,使得k
1
ξ
1
,k
2
ξ
2
,…,k
n
ξ
n-r
+k
0
η
0
=0,若k
0
=0,则k
1
ξ
1
,k
2
ξ
2
,…,k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
线性无关,所以k
1
=k
2
=…=k
n-r
=0,从而ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,所以k
0
≠0,故η
0
可由ξ
1
,ξ
2
,…,ξ
n-r
线性表示,由齐次线性方程组解的结构,有Bη
0
=0,矛盾,所以ξ
1
,ξ
2
,…,ξ
n-r
,η
0
线性无关,且为方程组ABX=0的解,从而n-r(AB)≥n-r+1,r(AB)≤r-1,这与r(B)=r(AB)矛盾,故方程组BX=0与ABX=0同解.
解析
转载请注明原文地址:https://kaotiyun.com/show/mUN4777K
0
考研数学二
相关试题推荐
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
求
[*]
证明不等式:χarctanχ≥ln(1+χ2).
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问£为多少时此质点的速度为?并求到此时刻该质点所经过的路程.
函数f(χ)=χ3-3χ+k只有一个零点,则k的范围为().
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2化之积成反比,比例系数为k=,求y=y(x).
设二次型f(x1,x2,x3,x4)=x12+2x1x2-x22+4x2x3-x32-2ax3x4+(a-1)2x42的规范形为y12+y22-y32;则参数a=______.
随机试题
浓硫酸可以用铁制的容器盛放。 ()
顺式作用元们:是指
凡生疮疡,毒不外泄,反陷入里,称为
A.可引起瞳孔扩大B.可引起呼吸抑制C.可引起共济失调D.可引起急性心力衰竭E.可引起再生障碍性贫血碳酸锂
患者,女,18岁,因骨盆多处骨折入院,伴多个脏器损伤,病情观察中最重要的是及时发现其是否出现了
股票的基本特征包括()。
根据企业国有资产法律制度的规定,下列属于上市公司国有股权变动方式的有()。
当前世界新军事变革是最广泛的一次军事革命,其核心是:
Nearlyacenturyago,biologistsfoundthatiftheyseparatedaninvertebrateanimalembryointotwopartsatanearlystageof
WherewillRaphaelgothismorning?
最新回复
(
0
)