首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P—1AP; ③AT; ④ α肯定是其特征向量的矩阵个数为( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 ①A2; ②P—1AP; ③AT; ④ α肯定是其特征向量的矩阵个数为( )
admin
2019-01-14
48
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量α是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中
①A
2
; ②P
—1
AP; ③A
T
; ④
α肯定是其特征向量的矩阵个数为( )
选项
A、1。
B、2。
C、3。
D、4。
答案
B
解析
由Aα=λα,α≠0,有A
2
α=A(λα)=λAα=λ
2
α,即α必是A
2
属于特征值λ
2
的特征向量。
知α必是矩阵
属于特征值
的特征向量。
关于②和③则不一定成立。这是因为
(P
—1
AP)(P
—1
α)=P
—1
Aα=λP
—1
α,
按定义,矩阵P
—1
AP的特征向量是P
—1
α。因为P
—1
α与α不一定共线,因此α不一定是P
—1
AP的特征向量,即相似矩阵的特征向量是不一样的。
线性方程组(λE—A)x=0与(λE—A
T
)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量,故选B。
转载请注明原文地址:https://kaotiyun.com/show/KkM4777K
0
考研数学一
相关试题推荐
设A、B均为n阶方阵,证明:|AB|=|A|.|B|.
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=2α1+α2-α3,Aα2=α1+2α2+α3,Aα3=-α1+α2+2α3.求A的特征值,并求可逆矩阵P,使P-1AP为对角矩阵.
设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
设R3中两个基α1=[1,1,0]T,α2=[0,1,1]T,α3=[1,0,1]T,β1=[1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T.求β1,β2,β3到α1,α2,α3的过渡矩阵.
求幂级数的收敛域及其和函数.
求曲线x=acos3t,y=asin3t绕直线y=x旋转一周所得曲面的面积.
已知随机变量X,Y的概率分布分别为并且P{X+Y=1}=1,求:(I)(X,Y)的联合分布;(Ⅱ)X与Y是否独立?为什么?
设G={(x,y)|0≤x≤3,0≤y≤1}是一矩形,向矩形G上均匀地掷一随机点(X,Y),则点(X,Y)落到圆x2+y2≤4上的概率为________.
设f(x)=在点x=0处连续,则常数a=______.
设则f(x,y)在点O(0,0)处
随机试题
下列账簿中,各单位都需设置的是
要在Web浏览器上显示加粗的文字“供给侧改革”,其HTML语句表示是()
下列各项中,属于激励因素的有()。
先天性输尿管囊肿最常见的好发部位在
下列结肠疾病中最易发展为结肠癌的是
女,45岁,G4P2。月经规律,白带增多半年,性交后阴道流血2个月。近3年未体检。妇科检查发现宫颈重度糜烂状,触血(+),子宫附件未见明显异常。宫颈活检组织病理报告为宫颈鳞状细胞癌,浸润深度为7mm。该患者的临床分期
人们在一定社会条件下拥有土地的经济形式称为()。
∫-33xdx等于:
甲公司2014年年初对A设备投资100000元,该项目2016年年初完工投产,2016年、2017年、2018年年末预期报酬分别为30000元、50000元、60000元,银行存款利率为12%。要求:按复利计算,并按年计息,计算投资额在2016年年初
甲公司2×15年6月30日取得乙公司80%的股份,对乙公司能够实施控制。2×16年7月1日,甲公司向乙公司出售一项专利,账面价值为80万元,售价为100万元。乙公司采用直线法摊销,预计使用年限5年,无残值,假定摊销额计入当期损益。2×16年乙公司按购买日公
最新回复
(
0
)