首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=2α1+α2-α3,Aα2=α1+2α2+α3, Aα3=-α1+α2+2α3. 求A的特征值,并求可逆矩阵P,使P-1AP为对角矩阵.
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=2α1+α2-α3,Aα2=α1+2α2+α3, Aα3=-α1+α2+2α3. 求A的特征值,并求可逆矩阵P,使P-1AP为对角矩阵.
admin
2017-06-14
74
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=2α
1
+α
2
-α
3
,Aα
2
=α
1
+2α
2
+α
3
, Aα
3
=-α
1
+α
2
+2α
3
.
求A的特征值,并求可逆矩阵P,使P
-1
AP为对角矩阵.
选项
答案
记 [*] 得矩阵B,也即矩阵A的特征值为λ
1
=λ
2
=3,λ
3
=0. 对应于λ
1
=λ
2
=3,解(3E-B)x=0,得基础解系为ξ
1
=(1,1,0)
T
,ξ
2
=(-1,0,1)
T
; 对应于λ
3
=0,解(0E—B)x=0,得ξ
3
=(0,1,1)
T
. 令P
2
=[ξ
1
,ξ
2
,ξ
3
],则P
2
-1
BP
2
= [*] 因P
2
-1
BP
2
=P
2
-1
P
1
-1
AP
1
P
2
=(P
1
P
2
)
-1
A(P
1
P
2
)= [*] 记矩阵P=P
1
P
2
= [α
1
,α
2
,α
3
][*] =[α
1
+α
2
,-α
1
+α
3
,α
2
+α
3
] 则P即为所求矩阵,且[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/opu4777K
0
考研数学一
相关试题推荐
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
若函数f(x)满足方程f"(x)+f’(x)-2f(x)=0及f"(x)+f(x)=2ex,则f(x)=_________.
设A,B为满足AB=0的任意两个非零矩阵,则必有
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.求矩阵B.
设A,B为满足AB=0的任意两个非零矩阵,则必有
(1998年试题,十二)已知线性方程组(I)的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22.…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T.试写出线性方程组(Ⅱ)的通解,并说明理由.
设函数y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
随机试题
下列不属于痢疾的诊断要点的是()
科学普及是指以深入浅出、通俗易懂的方式,向大众介绍自然科学和社会科学知识的一种活动。除了普及基本的科学知识与基本的科学概念之外,其主要内容还包括实用技术的推广,科学方法、科学思想与科学精神的传播。科普的益处是多方面的,包括对科学的益处、对国家经济的益处、对
在Excel2010作表中,假设A3=3,B3=6,选择A3:B3区域,按下Ctrl键并用鼠标拖动填充柄至D3,则单元格D3的值为_____。
骨巨细胞瘤治疗方案的确定,决定于
已出让的国有土地,若变更原出让合同约定提高宗地建筑容积率,应向国家补交土地出让金差价。从土地估价的角度分析,符合()。
计算机的常用输出设备有打印机和显示器。()
甲公司以100万元的价格向乙公司订购一台机床,根据合同约定,2016年4月1日,甲公司签发一张以乙公司为收款人、金额为100万元的银行承兑汇票,承兑人为A银行,到期日为2016年7月1日。2016年4月4日,乙公司将该银行承兑汇票丢失,被B拾得。4月5日
我国最早的书市“槐市”出现在()。
父亲把所有财物平均分成若干份后全部分给儿子们,其规则是长子拿一份财物和剩下的十分之一,次子拿两份财物和剩下的十分之一,三儿子拿三份财物和剩下的十分之一,以此类推,结果所有儿子拿到的财物都一样多,请问父亲一共有几个儿子?( )
Doyouknowinsurance(保险)?Buyinginsuranceisameansbywhichpeoplecanprotectthemselves【C1】______largelosses.Protection
最新回复
(
0
)