首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
admin
2017-06-14
33
问题
设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
选项
答案
必要性.ABX=0和BX=0是同解方程组<=>ABX=0和BX=0有相同的基础解系=>ABX=0和BX=0的基础解系的向量个数相同,即l—r(B)=l—r(AB),故r(AB)=r(B). 充分性.r(AB)=r(B)<=>ABX=0和BX=0的基础解系的向量个数相同,又因为BX=0的解均是(AB)X=A(BX)=0的解,故.BX=0的基础解系也是ABX=0的基础解系,故BX=0和ABX=0有相同的基础解系,ABX=0和BX=0是同解方程组.
解析
转载请注明原文地址:https://kaotiyun.com/show/Lpu4777K
0
考研数学一
相关试题推荐
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵曰的特征向量,并求B的全部特征值的特征向量;
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设数列{an}满足条件:a0=3,a1=1,an-2-n(n-1)an=0(n≥2),S(x)是幂级数的和函数。证明:S"(X)-S(X)=0;
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(Ⅰ)AX=0和(Ⅱ)ATAX=0必有()
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为F(x,y)=(Ⅰ)X和Y是否独立?(Ⅱ)求两个部件的寿命都超过100小时的概率a.
(1998年试题,八)设正项数列{an}单调减少,且发散,试问级数是否收敛?并说明理由.
设A是n阶矩阵,A的第i行、第i列的元素aii=i.j,求A的特征值,特征向量,并问A能否相似于对角阵,若能,求出相似对角阵;若不能,则说明理由.
随机试题
氨的分子式为()。
邓小平在重新恢复和确立“解放思想,实事求是”的思想路线过程中,提出( )
患者,男,30岁。反酸、胃灼热、嗳气,胸骨后烧灼感1个月,无吞咽困难。口服PPI制剂症状可缓解。应首先考虑的诊断是
开展药学服务的关键是
由医院药剂科与医师协商制定的适于本单位的处方医师对患者治病用药的书面文件
根据《中华人民共和国城乡规划法》的规定,下列关于建设项目选址各规划管理的行政主体表述中不符合规定的是()。
投资者参与开放式基金的认购需要经过()三个步骤。
下列句子中加下划线词语使用正确的一项是()。
填入画横线部分最恰当的一项是()。文化自信不是天上掉下来的,也不是仅仅在嘴上说说的,更不是虚无缥缈的“________”。文化自信来自对民族历史的深刻了解,对国家现实的全面把握,对发展战略的正确设计,对前途目标的精准判断。
A、生命B、物质C、金钱D、健康A根据“因为在西方人看来,生命是第一重要的,任何物质都没有生命重要”这句话,可知选A。
最新回复
(
0
)