首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=A;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=A;
admin
2016-01-11
58
问题
设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(一1,2,一1)
T
,α
2
=(0,一1,1)
T
是线性方程组Ax=0的两个解.
求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A;
选项
答案
对α
1
,α
2
正交化,令b
1
=α
1
=(一1,2,一1)
T
,[*]再分别将b
1
,b
2
,α
3
单位化,得[*] 则Q为正交矩阵,且Q
T
AQ=A.
解析
转载请注明原文地址:https://kaotiyun.com/show/Kl34777K
0
考研数学二
相关试题推荐
设随机变量X的概率密度为f(x)=则根据切比雪夫不等式,可知P{0<X<2(n+1)}≥________.
设随机变量X与Y相互独立,P{Y=-1}=P{Y=1}=,X的概率密度f(x)满足f’(x)+f(x)=0(σ>0),Z=XY.设Z1,Z2,…,Zn为总体Z的简单随机样本,求σ的最大似然估计量.
设随机变量X与Y相互独立,P{Y=-1}=P{Y=1}=,X的概率密度f(x)满足f’(x)+f(x)=0(σ>0),Z=XY.求f(x);
设矩阵满足CTAC=B.求a的值;
设生产某产品的边际成本和边际收益分别为MC=Q2-14Q+111,MR=100-2Q.当生产该产品的利润最大时,产量Q=________.
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.求正交变换x=Qy,将二次型f(x1,x2,x3)=xTAx化为标准形;
设区域D={(x,y)|-1≤x≤1,-1≤y≤1),f(x)为D内的正值连续函数,a,b为常数,则=________.
求球面x2+y2+z2=9与平面y+z=1的交线在坐标面上的投影曲线的方程.
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品,销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:
随机试题
起动机电磁开:是保持线圈搭铁点脱开如何处理?
Bythistimenextweek,thewinners______theirawards.
患者女性,19岁,哮喘重度急性发作而来急诊。查体见患者端坐呼吸,大口呼吸,大汗淋漓,说话不连贯。下列体征中预示病情严重的是
甲股份有限公司(本题下称“甲公司”)为上市公司,20×7年至20×9年与企业合并、长期股权投资有关的资料如下:(1)20×7年1月20日,甲公司与无关联关系的丙公司(非上市公司)签订购买其20%股权的合同,支付购买价款2000万元。(2)
金山岭长城被誉为“第二八达岭”。()
简述人本主义心理学基本观点。
以下历史事件发生的先后顺序不正确的是()。
值班人员的精神状态、一言一行均关系到本机关的威信与形象,因此,值班人员在工作中必须遵循一系列制度规范,其中最根本的制度是()。
U-Boot是一种通用的引导加载程序,对___________【75】系列处理器支持最为丰富,对___________【76】操作系统的支持最为完善。
I’dratherhavearoomofmyown,howeversmallitis,thansharearoomwithsomeoneelse.
最新回复
(
0
)