首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明:方程x=1+2ln x在(e,+∞)内有唯一实根ξ; (Ⅱ)在(Ⅰ)的基础上,取x0∈(e,ξ),令xn=1+2ln xn-1(n=1,2,…),证明:xn=ξ.
(Ⅰ)证明:方程x=1+2ln x在(e,+∞)内有唯一实根ξ; (Ⅱ)在(Ⅰ)的基础上,取x0∈(e,ξ),令xn=1+2ln xn-1(n=1,2,…),证明:xn=ξ.
admin
2022-04-27
70
问题
(Ⅰ)证明:方程x=1+2ln x在(e,+∞)内有唯一实根ξ;
(Ⅱ)在(Ⅰ)的基础上,取x
0
∈(e,ξ),令x
n
=1+2ln x
n-1
(n=1,2,…),证明:
x
n
=ξ.
选项
答案
(Ⅰ)令f(x)=x-1-2ln x,则f(e)=e-3<0,且 [*] 故由零点定理,可知f(x)=0在(e,+∞)内至少有已个实根. 又由于 [*] 故f(x)=0在(e,+∞)内有唯一实根,记为ξ. (Ⅱ)由(Ⅰ)知,当c∈(e,ξ)时,f(x)<0,即 1+2ln x>x, 故当e<x
0
<ξ时, x
1
=1+2ln x
0
>x
0
, x
1
=1+2ln x
0
<1+2ln ξ=ξ. 假设x
n
>x
n-1
,且x
n
<ξ,则有 x
n=1
=1+2ln x
n
>x
n
, x
n+1
=1+2ln x
n
<1+2ln ξ=ξ, 故由数学归纳法,可知{x
n
}单调增加有上界,故[*]x
n
存在,记[*]x
n
=A 对x
n
=1+2ln x
n-1
左右两端同时取极限,有A=1+2ln A.即A为方程x=1+2ln x的实根. 由(Ⅰ),可知[*]x
n
=A=ξ.
解析
转载请注明原文地址:https://kaotiyun.com/show/ALR4777K
0
考研数学三
相关试题推荐
设且f(x)处处可导,求f[g(x)]的导数.
已知下列非齐次线性方程组:求解方程组(I),用其导出组的基础解系表示其通解;
设a0,a1,an-1是n个实数,方阵(1)若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量;(2)若A有n个互异的特征值λ1,λ2,…,λn,求可逆阵P,使Pλ1AP=A.
(1)叙述并证明一元函数微分学中的罗尔定理;(2)叙述并证明一元函数微分学中的拉格朗日中值定理.
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
设有函数f1(x)=|lnx|,f1(x)=lnx+x(x一1),f3(x)=x2一3x2+x+1,f4(x)=|x一1+lnx|,则以(1,0)为曲线拐点的函数有
设二次型f(x1,x2,x3)=4x22一3x32+2ax1x24x1x3+8x2x3(其中a为整数)经过正交变换化为标准形f=y12+6y22+6y32,求:(I)参数a,b的值;(Ⅱ)正交变换矩阵Q。
设总体X与Y都服从正态分布N(0,σ2),已知X1,X2,…,Xm与Y1,Y2,…,Yn均是来自正态总体X与Y的两个相互独立的简单随机样本,统计量服从t(n)分布,则m与n应满足的关系为()
设f(x)在[a,b]上有定义,M>0且对任意的x,y∈[a,b],有|f(x)-f(y)|≤M|x-y|k.(1)证明:当k>0时,f(x)在[a,b]上连续;(2)证明:当k>1时,f(x)≡常数.
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:|f(x)dx-(b-a)f(a)|≤(b-a)2.
随机试题
从党的十三大到党的十四大,是邓小平理论( )
甲乙约定,甲的儿子考上大学后,则将甲儿子现在住的房间租给乙住,则此合同属于( )。
在下列材料费用中,承包商可以获得业主补偿的包括( )。
某钢筋混凝土基础工程,施工合同约定采用商品混凝土方式浇筑。但在基础施工过程中,由于业主要求将商品混凝土临时变更为现场搅拌混凝土方式,致使工程延期3天,则承包商可索赔材料费的情况是()。
下列各项,属于营业外支出的是()。
目前,世界上多数国家采用()的计算口径来统计本国的财政赤字。
关于国内生产总值,下列说法中错误的是()。
某企业生产甲产品完工后发现10件废品,其中4件为不可修复废品,6件为可修复废品,不可修复废品成本按定额成本计价,每件250元,回收材料价值300元,修复6件可修复废品,共发生直接材料100元,直接人工120元,制造费用50元,假定不可修复废品净损失由同种产
1
有下列程序:main(){intx=0;inty=0;while(x<7&&++y){y--;printf(:%d,%d",y,x);}程序的输出结果是()。
最新回复
(
0
)