首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)证明:方程x=1+2ln x在(e,+∞)内有唯一实根ξ; (Ⅱ)在(Ⅰ)的基础上,取x0∈(e,ξ),令xn=1+2ln xn-1(n=1,2,…),证明:xn=ξ.
(Ⅰ)证明:方程x=1+2ln x在(e,+∞)内有唯一实根ξ; (Ⅱ)在(Ⅰ)的基础上,取x0∈(e,ξ),令xn=1+2ln xn-1(n=1,2,…),证明:xn=ξ.
admin
2022-04-27
40
问题
(Ⅰ)证明:方程x=1+2ln x在(e,+∞)内有唯一实根ξ;
(Ⅱ)在(Ⅰ)的基础上,取x
0
∈(e,ξ),令x
n
=1+2ln x
n-1
(n=1,2,…),证明:
x
n
=ξ.
选项
答案
(Ⅰ)令f(x)=x-1-2ln x,则f(e)=e-3<0,且 [*] 故由零点定理,可知f(x)=0在(e,+∞)内至少有已个实根. 又由于 [*] 故f(x)=0在(e,+∞)内有唯一实根,记为ξ. (Ⅱ)由(Ⅰ)知,当c∈(e,ξ)时,f(x)<0,即 1+2ln x>x, 故当e<x
0
<ξ时, x
1
=1+2ln x
0
>x
0
, x
1
=1+2ln x
0
<1+2ln ξ=ξ. 假设x
n
>x
n-1
,且x
n
<ξ,则有 x
n=1
=1+2ln x
n
>x
n
, x
n+1
=1+2ln x
n
<1+2ln ξ=ξ, 故由数学归纳法,可知{x
n
}单调增加有上界,故[*]x
n
存在,记[*]x
n
=A 对x
n
=1+2ln x
n-1
左右两端同时取极限,有A=1+2ln A.即A为方程x=1+2ln x的实根. 由(Ⅰ),可知[*]x
n
=A=ξ.
解析
转载请注明原文地址:https://kaotiyun.com/show/ALR4777K
0
考研数学三
相关试题推荐
一批产品有10个正品2个次品,任意抽取两次,每次取一个,抽取后不放回,求第二次抽取次品的概率.
设f(x)在(一∞,+∞)上是正值连续函数,判别φ(x)=∫—aa|x一u|f(u)du在(一∞,+∞)上的凹凸性.
设g(x)在[a,b]连续,f(x)在[a,b]二阶可导,f(a)=f(b)=0,且对x(a≤x≤b)满足f"(x)+g(x)f’(x)一f(x)=0.求证:当x∈[a,b]时f(x)≡0.
设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi一(i=1,2,…,n).求:Cov(Y1,Yn).
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于60000元的概率γ
设a>0,讨论方程aex=x2根的个数.
设A,B,C均是3阶矩阵,满足AB=B2—BC,其中B=,则A5=_________.
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
对于任意二事件A,B,0<P(A)<1,0<P(B)<1,定义A与B的相关系数为证明事件A,B相互独立的充分必要条件是其相关系数为零;
随机试题
除哪些药品以外,医疗机构不得限制门诊就诊人员持处方到药品零售企业购药
有机酸类,生物碱类药,酸、碱常量法准确测定的限度一般是
投保人或被保险人的欺诈、纵火等骗保骗赔行为都属于()。
某增值税一般纳税人销售从农业生产者处购进的自产谷物,其缴纳增值税时适用零税率。()(2011年)
《旅游投诉暂行规定》要求被投诉者在()之日起30日内,不管投诉内容与事实是否相符,都要作出书面答复。
标志着科学社会主义诞生的事件是
2017年3月8日,习近平参加第十二届全国人民代表大会第五次会议四川代表团审议时指出“到2020年现行标准下农村贫困人口全部脱贫、贫困县全部摘帽,是我们党立下的军令状。脱贫攻坚越往后,难度越大,越要压实责任、精准施策、过细工作。要继续选派好驻
我国社会主义民族关系的基本特征是:平等、团结、互助、()。
信息系统是由硬件、软件、数据库、远程通信和网络、人员以及过程组成的。其中起主导作用的是()。
下列各进制的整数中,值最大的一个是
最新回复
(
0
)