首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=α2+α3=求方程组AX=b的通解.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=α2+α3=求方程组AX=b的通解.
admin
2019-08-23
33
问题
四元非齐次线性方程组AX=b有三个解向量α
1
,α
2
,α
3
且r(A)=3,设α
1
+α
2
=
α
2
+α
3
=
求方程组AX=b的通解.
选项
答案
因为r(A)=3,所以方程组AX=b的通解形式为kξ+η,其中ξ为AX=0的一个基础解系,η为方程组AX=b的特解,根据方程组解的结构的性质, ξ=(α
2
+α
3
)一(α
1
+α
2
)=α
3
一α
1
=[*] 所以方程组AX=b的通解为[*](k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/Klc4777K
0
考研数学一
相关试题推荐
曲面上任何点处的切平面在各坐标轴上的截距之和为__________。
设z=f(x,y)在点(x0,y0)处可微,△z是f(x,y)在点(x0,y0)处的全增量,则在点(x0,y0)处()
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B。证明B可逆。
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。证明矩阵Q可逆的充分必要条件是αTA—1α≠b。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn—r+1是它的n—r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
设向量组α1=(a,0,10)T,α2=(—2,1,5)T,α3=(—1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时,β可由α1,α2,α3线性表出,且表示唯一。
设α1,α2,…,αs均为n维向量,下列结论中不正确的是()
设A、B、C是三个相互独立的随机事件,且0<P(C)<1,则在下列给定的四对事件中不相互独立的是()
设A,B,C是三个随机事件,P(ABC)﹦0,且0<P(C)<1,则一定有()
随机试题
氧气自动切割的必要条件之一是燃点要高于熔点。()
科斯定律的理论前提是
呼吸衰竭的血气诊断标准是
企业法律顾问的工作原则是()
某高速公路工程全长160km,跨甲、乙两省市,划分为甲1、甲2、甲3和乙1、乙2、五个施工合同段,并相应设置现场监理机构。请按照监理规范的要求选择适当的监理组织形式,画出监理组织结构图,并分析该组织模式的优缺点。
以下不属于员工动态特征的是()。
女性,80岁。慢性咳嗽咳痰20余年,冬季加重。近5年活动后气促。1周前感冒后痰多,气促加剧。近2天嗜睡。血白细胞18.6×109/L,中性粒细胞占90%,动脉血气:pH7.29,PaCO280mmHg,PaO247mmHg,BE-3.5mmol/L引起
二战后世界经济走向统一的过程中,仍然存在着多样性,出现了“两种体系、三种国家”,下列不属于社会主义国家经济类型的是()。
交管局要求司机在通过某特定路段时,在白天也要像晚上一样使用大灯,结果发现这条路上的年事故发生率比从前降低了15%。他们得出结论说:如果在全市范围内都推行该项规定会同样地降低事故发生率。以下哪项如果为真.最能支持上述论证的结论?
在TCP/IP网络中,主机A和主机B通过一路由器互联,提供两主机应用层之间通信的层是(248),提供机器之间通信的层是(249),具有IP层和网络接口层的设备是(250);在A与路由器和路由器与B使用不同物理网络的情况下,主机A和路由器之间传送的数据帧与路
最新回复
(
0
)