首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,是非齐次线性方程组Aχ=b的三个不同的解,那么下列向量α1-α2,α1+α2-2α3,(α2-α1),α1-3α2+2α3中能导出方程组Aχ=0的解向量共有( )
已知α1,α2,α3,是非齐次线性方程组Aχ=b的三个不同的解,那么下列向量α1-α2,α1+α2-2α3,(α2-α1),α1-3α2+2α3中能导出方程组Aχ=0的解向量共有( )
admin
2019-01-14
27
问题
已知α
1
,α
2
,α
3
,是非齐次线性方程组Aχ=b的三个不同的解,那么下列向量α
1
-α
2
,α
1
+α
2
-2α
3
,
(α
2
-α
1
),α
1
-3α
2
+2α
3
中能导出方程组Aχ=0的解向量共有( )
选项
A、4个
B、3个
C、2个
D、1个
答案
A
解析
由Aα
i
=b(i=1,2,3)有
A(α
1
-α
2
)=Aα
1
-Aα
2
=b-b=0,
A(α
1
+α
2
-2α
3
)=Aα
1
+Aα
2
-2Aα
3
=b+b-2b=0,
A
=0,
A(α
1
-3α
2
+2α
3
)=Aα
1
-3Aα
2
+2Aα
3
=b-3b+2b=0,
那么,α
1
-α
2
,α
1
+α
2
-2α
3
,
(α
2
-α
1
),α
1
-3α
2
+2α
3
均是齐次方程组Aχ=0的解.
所以应选A.
转载请注明原文地址:https://kaotiyun.com/show/SNM4777K
0
考研数学一
相关试题推荐
(1)已知α1,α2为2维列向量,矩阵A=(2α1+α2,α1一α2),B=(α1,α2).若|A|=6,求|B|.(2)α1,α2,α3是线性无关的3维向量组,3阶矩阵A满足Aα1=α1+2α2,Aα2=α2+2α3,Aα3=α3+2α1.
设矩阵E为2阶单位矩阵,2阶矩阵B满足BA=B+2E,求|B|.
设A=αβT,其中α和β都是n维列向量,证明对正整数k,Ak=(βTα)k-1A=(tr(A))k-1A.(tr(A)是A的对角线上元素之和,称为A的迹数.)
设u=f(x,y,z,t)关于各变量均有连续偏导数,而其中由方程组确定z,t为y的函数,求
设η1,η1,…,ηk是向量子空间V的一个规范正交基,α1,α2∈V,它们在此基下的坐标分别为k维实向量γ1,γ2.证明:(1)内积(α1,α2)=(γ1,γ2).(2)||αi||=||γi||,i=1,2.
设A是n阶矩阵,证明
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2一α3.又设β=α1+α2+α3+α4,求AX=β的通解.
已知二维随机变量(X,Y)的概率分布为又P{X=1}=0.5,且X与Y不相关.(I)求未知参数a,b,c;(Ⅱ)事件A={X=1}与B={max(X,Y)=1}是否独立,为什么?(Ⅲ)随机变量X+Y与X—Y是否相关,是否独
随机试题
患儿女性,6个月,因腹泻、呕吐4天于11月就诊。大便呈蛋花汤样,每天10余次。第1天补液包括
A.流行过程B.传染过程C.疫源地D.疫源地范围E.传播途径一系列相互关系、相继发生的疫源地构成了传染病的
《素问.宣明五气论》五味所禁,血病无多食
新生儿黄疸最严重的并发症是
某沥青软化点试验测试值为:48.24℃、48.7℃.50.5℃,结果准确至0.5℃,则该沥青软化点试验结果为()℃。
水利水电工程发生一般质量事故后,应由()组织有关单位制定处理方案并实施。
低压配电系统中的三相四线制电缆线路的敷设应采用()。
在400米的环形游泳池四周,每隔10米放一个安全提示牌,现在要拿走一些提示牌,要求每两个安全提示牌之间距离相等并且是整数,游泳池四角的提示牌不动,改动后发现一共有8个提示牌没动,则现在提示牌的间隔最大是多少米?()
函数y=ln(1—2x)在x=0处的n阶导数y(n)(0)=______。
Duringrecentyearswehaveheardmuchabout"race":howthisracedoescertainthingsandthatracebelievescertainthingsand
最新回复
(
0
)