首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,是非齐次线性方程组Aχ=b的三个不同的解,那么下列向量α1-α2,α1+α2-2α3,(α2-α1),α1-3α2+2α3中能导出方程组Aχ=0的解向量共有( )
已知α1,α2,α3,是非齐次线性方程组Aχ=b的三个不同的解,那么下列向量α1-α2,α1+α2-2α3,(α2-α1),α1-3α2+2α3中能导出方程组Aχ=0的解向量共有( )
admin
2019-01-14
47
问题
已知α
1
,α
2
,α
3
,是非齐次线性方程组Aχ=b的三个不同的解,那么下列向量α
1
-α
2
,α
1
+α
2
-2α
3
,
(α
2
-α
1
),α
1
-3α
2
+2α
3
中能导出方程组Aχ=0的解向量共有( )
选项
A、4个
B、3个
C、2个
D、1个
答案
A
解析
由Aα
i
=b(i=1,2,3)有
A(α
1
-α
2
)=Aα
1
-Aα
2
=b-b=0,
A(α
1
+α
2
-2α
3
)=Aα
1
+Aα
2
-2Aα
3
=b+b-2b=0,
A
=0,
A(α
1
-3α
2
+2α
3
)=Aα
1
-3Aα
2
+2Aα
3
=b-3b+2b=0,
那么,α
1
-α
2
,α
1
+α
2
-2α
3
,
(α
2
-α
1
),α
1
-3α
2
+2α
3
均是齐次方程组Aχ=0的解.
所以应选A.
转载请注明原文地址:https://kaotiyun.com/show/SNM4777K
0
考研数学一
相关试题推荐
(1)已知α1,α2为2维列向量,矩阵A=(2α1+α2,α1一α2),B=(α1,α2).若|A|=6,求|B|.(2)α1,α2,α3是线性无关的3维向量组,3阶矩阵A满足Aα1=α1+2α2,Aα2=α2+2α3,Aα3=α3+2α1.
两个4阶矩阵满足A2=B2,则
设u=f(x,y,z,t)关于各变量均有连续偏导数,而其中由方程组确定z,t为y的函数,求
设A是n阶矩阵,证明
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2一α3.又设β=α1+α2+α3+α4,求AX=β的通解.
设随机变量X的分布函数为求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}以及概率密度f(x).
在区间(0,1)中任取两数,求这两数乘积大于0.25的概率.
抛掷两枚骰子,在第一枚骰子出现的点数能够被3整除的条件下,求两枚骰子出现的点数之和大于8的概率.
设有某种零件共100个,其中10个是次品,其余为合格品.现在从这些零件中不放回抽样,每次抽取一个零件,如果取出一个合格品就不再取下去,则在三次内取到合格品的概率为______。
随机试题
驾驶机动车遇到这种情况要靠右侧停车等待。
当旧的经济关系日益腐朽,新的经济关系日益形成时,旧的道德体系也必将为新的道德体系所代替。人们的道德水平必然随着社会实践由低级到高级的发展而不断进步。这说明【】
日本血吸虫:中华支睾吸虫:
女性,26岁。间歇性牙龈出血伴月经过多1年。体检:双下肢可见散在出血点及紫癜,肝脾不大。血红蛋白120g/L,红细胞4.6×1012/L,白细胞5.5×109/L,分类正常,血小板25×109/L。特发性血小板减少性紫癜诊断要点不包括
十二指肠癌较罕见发生在哪段?()。
根据《中华人民共和国水污染防治法》对饮用水水源保护区的有关规定,下列说法中正确的是()。
我国地貌景观可分为花岗岩山地、岩溶山水、丹霞地貌等等,下列哪一组景观是上述三种地貌景观的典型代表()。
一线贯通是公文中显示主旨的方法之一,指的是主旨分散于一篇文章各个部分的小标题、小观点或者是条旨句、段旨句中,起一个穿针引线、提纲挈领的作用。()
[*]
HereIwanttotrytogiveyouananswertothequestion:whatpersonalqualitiesare【C1】______inateacher?Probablynotwope
最新回复
(
0
)