首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)有连续导数,F(x)=∫0xf(t)f’(2a一t)dt,证明: F(2a)一2F(a)=f2(a)一f(0)f(2a).
设函数f(x)有连续导数,F(x)=∫0xf(t)f’(2a一t)dt,证明: F(2a)一2F(a)=f2(a)一f(0)f(2a).
admin
2016-06-25
57
问题
设函数f(x)有连续导数,F(x)=∫
0
x
f(t)f’(2a一t)dt,证明:
F(2a)一2F(a)=f
2
(a)一f(0)f(2a).
选项
答案
F(2a)一2F(a)=∫
0
2a
f(t)f(2a一t)dt一2∫
0
2a
f(t)f’(2a一t)dt =∫
0
2a
f(t)f’(2a一t)dt—∫
0
2a
f(t)f’(2a—t)dt, 其中∫
a
2a
f(t)f’(2a一t)dt=f
2
(a)一f(0)f(2a)+∫
a
2a
f(2a一t)f’(t)dt,所以 F(2a)一2F(a)=f
2
(a)一f(0)f(2a)+∫
a
2a
f(2a—t)f’(t)dt—∫
0
a
f(t)f’(2a一t)dt, 又∫
a
2a
f(2a一t)f’(t)dt[*]∫
0
a
f(u)f’(2a一u)du=∫
0
a
f(t)f’(2a一t)dt,所以, F(2a)一2F(a)=f
2
(a)一f(0)f(2a).
解析
转载请注明原文地址:https://kaotiyun.com/show/Knt4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0.证明:(1)存在η∈(1/2,1),使得f(η)=η;(2)对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f′(ξ)-k[f(ξ)-ξ]=1.
确定a,b,使得当x→0时x-(a+bcosx)sinx为阶数尽可能高的无穷小.
设随机变量X,Y都是正态变量,且X,Y不相关,则().
设随机变量X的密度函数为f(x)=(-∞<x<+∞).求Cov(X,|X|),问X,|X|是否不相关?
设随机变量X与Y的相关系数为1/3,且E(X)=0,E(Y)=1,E(X2)=4,E(Y2)=10,则E[(X+Y)2]________.
设f(x)在[a,b]上连续,且x→a+时函数f(x)的极限存在,则函数f(x)在(a,b]上有界。
设函数f(x)连续,且f(0)≠0,求极限.
设f(x)可导,则当△x→0时,△y-dy是△x的().
随机试题
下列各种类型的骨折中属于不稳定骨折的是
慢性心功能不全最常见的原因是
xy’’=(1+2x2)y’的通解是()。
某施工单位承接了一段二级道路施工,其中包括3道结构形式和工程量基本相同的涵洞。根据工期要求,对于3道涵洞施工要求组织几个相同的工作队,在同一时间、不同的空间上进行施工。按照资源计划的要求,施工涵洞时安排的技术工人主要有测量工、机修工、钢筋工、木工、混凝
下列选项中,属于客观公正的基本要求的有()。
某冰箱生产企业在市场上推出了一种只卖1999元的经济型产品,而它的高档产品要卖3万多元,从而在吸引顾客来看经济型冰箱时,尽力设法影响他们购买更高档的冰箱。该企业产品大类决策属于()。
依据()可以将学习划分为意义学习与机械学习。
在抗击外国侵略的战争中,许多爱国官兵英勇献身。其中,在第二次鸦片战争中以身殉国的是()。
汉代由皇帝下诏责成中央和地方各级长官每年向朝廷推荐贤能之人为官的选任制度是()。
A、Allwhalingisbad.B、Commercialwhalingisimmoral.C、Whalingshouldbelimitedonlyforfood.D、TheIWCshouldbereplaced.
最新回复
(
0
)