首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:ξ∈(0,1)使得
设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:ξ∈(0,1)使得
admin
2018-11-22
33
问题
设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:
ξ∈(0,1)使得
选项
答案
[*] 因此F(x)在[0,1]上连续,在(0,1)内可导. 由于f(0)=f(1)=0,由罗尔定理知,[*]η∈(0,1)使f’(η)=0.因此,F(η)=F(1)=0,对F(x)在[η,1]上利用罗尔定理得,[*]η∈(η,1),使得F’(ξ)=[*]=0,即 [*]
解析
即证f"(x)—
在(0,1)存在零点.
转载请注明原文地址:https://kaotiyun.com/show/KoM4777K
0
考研数学一
相关试题推荐
设函数f(x)在区间[0,1]上连续,且
设随机变量Y服从参数为λ=1的泊松分布,随机变量Xk=,k=0,1。试求:X0和X1的联合分布律;
已知P-1AP=,α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的特征向量,那么矩阵P不能是()
已知二次型f(x1,x2,x3)=xTAx=2x12+2x22+ax32+4x1x3+2tx2x3经正交变换x=Py可化成标准形f=y12+2y22+7y32,则t=_______。
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η1,η2,η3,且η1+2η2=(2,0,5,-1)T,η1+2η3=(4,3,-1,5)T,η3+2η1=(1,0,-1,2)T,求方程组的通解。
设函数f(x)=x+,数列{xn}满足x1=1且xn+1=f(xn),求f(x)的极值;
设(X,Y)的联合密度函数为f(x,y)=(Ⅰ)求常数k;(Ⅱ)求X的边缘密度;(Ⅲ)求当X=x(0≤x≤)下Y的条件密度函数fY|X(y|x).
设f(x)在x=0处二阶导数连续,且试求f(0),f’(0),f’’(0)以及极限
设随机变量X的概率密度为,-∞<x<+∞,求:(1)常数C;(2)X的分布函数F(x)和P{0≤X≤1};(3)Y=e-|X|的概率密度fY(y).
(00年)设S:x2+y2+z2=a2(z≥0),S1为S在第一卦限中的部分,则有
随机试题
甲状腺大部切除术治疗甲亢的手术指征不包括
A.平肝潜阳,制酸止痛B.平抑肝阳,柔肝止痛C.疏肝理气,调经止痛D.理气和胃,祛寒止痛E.疏肝下气,散寒止痛吴茱萸的功效有
广告策划包括()。
关于投资乘数原理和加速数原理,下列说法中正确的是()。
决定建设工程价值和使用价值的主要阶段是()。
在起重工程中,以不均衡载荷系数计人其影响。一般取不均衡载荷系数k2为()。
外国人为前往我国不对外国人开放地区旅行所办理的旅行证的有效期最长为()。
A、 B、 C、 D、 C
Hisparentsdiedwhenhewasyoung,sohewas______upbyhisgrandma.
Australia,officiallytheCommonwealthofAustralia,isacountryinthesouthernhemisphere.Itcomprisesthemainlandofthew
最新回复
(
0
)