首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)T+(1,2,一1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)T+(1,2,一1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
admin
2016-01-11
78
问题
设矩阵A=(α
1
,α
2
,α
3
),其中α
1
,α
2
,α
3
是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)
T
+(1,2,一1)
T
,k为任意常数.
试求α
1
,α
2
,α
3
的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
选项
答案
(1)由题设条件可知ξ=(1,一2,3)
T
是对应的齐次线性方程组Ax=0的一个基础解系,所以r(A)=3—1=2;η=(1,2,一1)
T
为非齐次线性方程组Ax=b的一个特解. 于是有[*] 由(1)可得α
1
=2α
2
—3α
3
,即α
1
可用α
2
,α
3
线性表示,则α
2
,α
3
线性无关,否则r(α
1
,α
2
,α
3
)=1与r(A)=2矛盾,所以α
1
,α
2
,α
3
的一个极大线性无关组可取为α
2
,α
3
.由(2)可得 b=α
1
+2α
2
一α
3
=4α
2
一4α
3
.
解析
本题是抽象型非齐次线性方程组的典型情形.只要从题设条件求得对应齐次线性方程组Ax=0的一个基础解系与非齐次线性方程组Ax=b的一个特解即可.其中一个关键问题仍是确定系数矩阵A的秩,由此可知基础解系中包含线性无关解向量个数.
转载请注明原文地址:https://kaotiyun.com/show/Kv34777K
0
考研数学二
相关试题推荐
设三阶矩阵A的特征值为λ1=-1,λ2=-1/2,λ3=1/2,其对应的特征向量为α1,α2,α3,令P=(2α3,-3α1,-α2),则P-1(A-1+2E)P=________.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=求此二次型.
设函数f(x)在[0,1]上连续,(0,1)内可导,且证明在(0,1)内存在一点,使fˊ(c)=0.
某人接连不断、独立地对同一目标射击,直到击中为止,以X表示命中时已射击的次数.假设他共进行了10轮这样的射击,各轮射击的次数分别为1,2,3,4,4,5,3,3,2,3,试求此人命中率P的矩估计和最大似然估计.
若又f(x)在x=0处可导,则
设f(x)=zex,则/f(n)(x)在x=_____处取极小值_____
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,﹣1)T.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
设y=y(x)由方程y=f(x2+y2)+f(x+y)确定,且y(0)=2,其中f(x)可导,且f’(2)=1/2,f’(4)=1,则y’(0)=________.
设f(x)在[0,1]上有二阶连续导数,且f(1)=f’(1)=0.证明:∫01f(x)dx=1/2∫01x2f"(x)dx;
已知u=f(x,y,z)=xe2zsin与三元方程x2+2y+z=3(*).若把方程(*)中的z确定为x,y的函数,试求|(1,1,0);
随机试题
以下所列抗菌药物的给药途径中,最正确的是
CT扫描中常用的FOV是指
瘢痕性类天疱疮在口腔中病损的最常见部位是
潮湿环境下,照明电源的电压不大于()V。
新增付款方式。付款方式编码:01付款方式名称:银行汇票进行票据管理:不需要
以下关于公司型基金的表述中,正确的是()。
将细菌培养物由供氧条件转为厌氧条件,下列过程中会加快的一种是()。
王充认为教育的最高目标是培养“鸿儒”,其有别于儒生、通人、文人的显著特征是
表达式3.6-5/2+1.2+5%2的值是
Whydoestheprofessormention$20bill?
最新回复
(
0
)