首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)T+(1,2,一1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)T+(1,2,一1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
admin
2016-01-11
96
问题
设矩阵A=(α
1
,α
2
,α
3
),其中α
1
,α
2
,α
3
是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)
T
+(1,2,一1)
T
,k为任意常数.
试求α
1
,α
2
,α
3
的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
选项
答案
(1)由题设条件可知ξ=(1,一2,3)
T
是对应的齐次线性方程组Ax=0的一个基础解系,所以r(A)=3—1=2;η=(1,2,一1)
T
为非齐次线性方程组Ax=b的一个特解. 于是有[*] 由(1)可得α
1
=2α
2
—3α
3
,即α
1
可用α
2
,α
3
线性表示,则α
2
,α
3
线性无关,否则r(α
1
,α
2
,α
3
)=1与r(A)=2矛盾,所以α
1
,α
2
,α
3
的一个极大线性无关组可取为α
2
,α
3
.由(2)可得 b=α
1
+2α
2
一α
3
=4α
2
一4α
3
.
解析
本题是抽象型非齐次线性方程组的典型情形.只要从题设条件求得对应齐次线性方程组Ax=0的一个基础解系与非齐次线性方程组Ax=b的一个特解即可.其中一个关键问题仍是确定系数矩阵A的秩,由此可知基础解系中包含线性无关解向量个数.
转载请注明原文地址:https://kaotiyun.com/show/Kv34777K
0
考研数学二
相关试题推荐
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=求此二次型.
函数y=在区间[0,2]上的平均值为__________.
若正项级数收敛,则().
设f(x)是区间上的正值连续函数,且若把I,J,K按其积分值从小到大的次序排列起来,则正确的次序是
星形线(0>0)绕Ox轴旋转所得旋转曲面的面积为__________.
设A=E-ααT,α为3维非零列向量.(I)求A-1,并证明:α与Aα线性相关;(Ⅱ)若α=(α,α,α)T(a≠0),求正交矩阵Q,使得QTAQ=A;(Ⅲ)在(Ⅱ)的基础上,A与A2是否合同?说明理由.
设幽数f(x,y)有二阶连续偏导数,且满足f”xx(x,y)=f”yy(x,y),f(x,2x)=x,f’x(x,2x)=x2,则f”xx(x,2x)=()
函数f(x)=∫xx+2πesintsintdt的值().
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
随机试题
企业收集一手资料的过程中,以下哪种方法最完整,最富灵活性?
青光眼病人术后随诊应注意
无并发症的肺炎球菌肺炎最主要的治疗措施是( )
某市一栋普通办公楼为砖混结构3000m3,一般土建工程单位造价为970元/m2,其中毛石基础为39元/m3,而今拟建一栋办公楼3500m3,采用钢筋混凝土带形基础为51元/m3,其他结构相同。该拟建办公楼一般土建工程概算编制适合采用()
甲有限责任公司(以下简称“甲公司”)为一家从事机械制造的增值税一般纳税企业。2020年1月1日所有者权益总额为5400万元,其中实收资本4000万元、资本公积400万元、盈余公积800万元、未分配利润200万元。2020年度甲公司发生如下经济业务: (1
为缩小城乡差别、促进城乡经济协调发展,政府提供必要的制度保证和政策支持,体现了政府的()职能。
保险的基本职能是()。
求级数的和。
DBMSqp实现事务持久性的子系统是——。
Onlyfiveyearsago,there______ashortageofcomputerspecialists.
最新回复
(
0
)