首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)T+(1,2,一1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
设矩阵A=(α1,α2,α3),其中α1,α2,α3是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)T+(1,2,一1)T,k为任意常数. 试求α1,α2,α3的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
admin
2016-01-11
44
问题
设矩阵A=(α
1
,α
2
,α
3
),其中α
1
,α
2
,α
3
是4维列向量,已知非齐次线性方程组Ax=b的通解为x=k(1,一2,3)
T
+(1,2,一1)
T
,k为任意常数.
试求α
1
,α
2
,α
3
的一个极大线性无关组,并把向量b用此极大线性无关组线性表示;
选项
答案
(1)由题设条件可知ξ=(1,一2,3)
T
是对应的齐次线性方程组Ax=0的一个基础解系,所以r(A)=3—1=2;η=(1,2,一1)
T
为非齐次线性方程组Ax=b的一个特解. 于是有[*] 由(1)可得α
1
=2α
2
—3α
3
,即α
1
可用α
2
,α
3
线性表示,则α
2
,α
3
线性无关,否则r(α
1
,α
2
,α
3
)=1与r(A)=2矛盾,所以α
1
,α
2
,α
3
的一个极大线性无关组可取为α
2
,α
3
.由(2)可得 b=α
1
+2α
2
一α
3
=4α
2
一4α
3
.
解析
本题是抽象型非齐次线性方程组的典型情形.只要从题设条件求得对应齐次线性方程组Ax=0的一个基础解系与非齐次线性方程组Ax=b的一个特解即可.其中一个关键问题仍是确定系数矩阵A的秩,由此可知基础解系中包含线性无关解向量个数.
转载请注明原文地址:https://kaotiyun.com/show/Kv34777K
0
考研数学二
相关试题推荐
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=Qy化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设A是三阶实对称矩阵,若对任意的三维列向量X,有XTAX=0,则().
A、 B、 C、 D、 C
某人接连不断、独立地对同一目标射击,直到击中为止,以X表示命中时已射击的次数.假设他共进行了10轮这样的射击,各轮射击的次数分别为1,2,3,4,4,5,3,3,2,3,试求此人命中率P的矩估计和最大似然估计.
设f(x)为连续函数,且f(1)=1,则
设f(x)为不恒等于零的奇函数,Rf’(0)存在,则函数g(x)=().
求幂级数的收敛域及和函数。
设A=E-ααT,α为3维非零列向量.(I)求A-1,并证明:α与Aα线性相关;(Ⅱ)若α=(α,α,α)T(a≠0),求正交矩阵Q,使得QTAQ=A;(Ⅲ)在(Ⅱ)的基础上,A与A2是否合同?说明理由.
曲线x2-xy+y2=3上的点到原点的最大距离为()
设A为三阶方阵,A1,A2,A3表示A中三个列向量,则|A|=().
随机试题
A.胸中B.心中C.脉中D.脉外E.腹中卫气行于
朱某系某县民政局副局长,率县福利企业年检小组到同学黄某任厂长的电气厂年检时,明知该厂的材料有虚假、残疾员工未达法定人数,但朱某以该材料为准,使其顺利通过年检。为此,电气厂享受了不应享受的退税优惠政策,获取退税300万元。黄某动用关系,帮朱某升任民政局局长。
技术高度密集型行业一般属于()市场。
在行政赔偿诉讼中,()。
根据我国《宪法》的规定,下列选项中不属于公民获得物质帮助的条件的是()。
黄河远上白云间:王之涣:《凉州词》
CarvingADragonattheCoreofLiterature
Isitpossibleforachildtohavethreeparents?ApaperjustpublishedinNaturebyShoukhratMital-ipovandhiscolleaguesse
A、Intheclinic.B、Inthepostoffice.C、Inthegrocery.D、Inthedepartmentstore.D从对话中可知男士可能正在试穿衣服,因此地点应是在departmentstore(百货
Theconceptofobtainingfreshwaterfromicebergsthataretowedtopopulatedareasandaridregionsoftheworldwasoncetrea
最新回复
(
0
)