首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E-ααT,α为3维非零列向量. (I)求A-1,并证明:α与Aα线性相关; (Ⅱ)若α=(α,α,α)T(a≠0),求正交矩阵Q,使得QTAQ=A; (Ⅲ)在(Ⅱ)的基础上,A与A2是否合同?说明理由.
设A=E-ααT,α为3维非零列向量. (I)求A-1,并证明:α与Aα线性相关; (Ⅱ)若α=(α,α,α)T(a≠0),求正交矩阵Q,使得QTAQ=A; (Ⅲ)在(Ⅱ)的基础上,A与A2是否合同?说明理由.
admin
2022-04-27
104
问题
设A=E-
αα
T
,α为3维非零列向量.
(I)求A
-1
,并证明:α与Aα线性相关;
(Ⅱ)若α=(α,α,α)
T
(a≠0),求正交矩阵Q,使得Q
T
AQ=A;
(Ⅲ)在(Ⅱ)的基础上,A与A
2
是否合同?说明理由.
选项
答案
[*] 故α与Aα线性相关. (Ⅱ)由α=(a,a,a)
T
(a≠0),知 α
T
α=3a
2
,αα
T
=[*](a,a,a)=a
2
[*], 故 A=[*] A为实对称矩阵. 由|λE-A|=0,得A的特征值为λ
1
=λ
2
=1,λ
3
=-2. 由(1·E-A)x=0,得A的特征向量为 α
1
=(-1,1,0)
T
,α
2
=(1,1,-2)
T
(已正交). 由(-2E-A)x=0,得A的特征向量为α
3
=(1,1,1)
T
. 将α
1
,α
2
,α
3
单位化,得 γ
1
=[*](-1,1,0)
T
,γ
2
=[*](1,1,-2)
T
,γ
3
=[*](1,1,1)
T
令Q=(γ
1
,γ
2
,γ
3
),为正交矩阵,使得 Q
-1
AQ=Q
T
AQ=[*] (Ⅲ)由A
2
=[*],|XE-A
2
|=0,得A
2
的特征值为1,1,4.而A的正、负惯性指数为P
A
=2,q
A
=1.A
2
的正、负惯性指数为[*],故A与A
2
不合同.
解析
转载请注明原文地址:https://kaotiyun.com/show/pLR4777K
0
考研数学三
相关试题推荐
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f”(ξ)=0.
设总体X的概率密度为其中θ是未知参数(0
厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2,销售量分别为q1和q2,需求函数分别为q1=24-0.2p1和q2=10-0.05p2,总成本函数为C=35+40(q1+q2).试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大总
设二次型f(x1,x2,x3)=4x22一3x32+2ax1x24x1x3+8x2x3(其中a为整数)经过正交变换化为标准形f=y12+6y22+6y32,求:(I)参数a,b的值;(Ⅱ)正交变换矩阵Q。
设z=xf(x—y,xy2),其中f(u,v)具有二阶连续偏导数,求
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)—g(b)=0.存在
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)—g(b)=0.g(x)≠0.任意x∈(a,b);
设k>0,讨论常数k的取值,使f(x)=xlnx+k在其定义域内没有零点、有一个零点及两个零点.
若函数y=f(x)的定义域为[0,1],则的定义域为__________.
随机试题
中国共产党一切活动的出发点和落脚点是()
工程建设监理规划应在签订委托监理合同及收到设计文件后开始编制,完成后必须经()审核批准,并应在召开第一次工地会议前报送业主。
会计资料移交后,如发现移交人员在其经办会计工作期间内所发生的问题,应由移交人员和接收人员共同对这些会计资料的合法性、真实性承担法律责任。()
该成套设备进口时,可由()向海关申报。若该设备进口时,经营单位以间接代理的方式委托某代理报关企业向海关申报,假如经海关审查,发现有瞒报价格行为,应由()承担法律责任。
最终消费包括居民消费和()。
结构化面试要求面试考官()
为推动现代海洋产业发展,浙江省着力建设功能多样的海岛,如港口物流岛、海洋生态旅游岛、海洋科技岛等。下图为浙江省部分区域分布图。读图完成第23~24题。与丙岛相比,甲岛更适宜发展的主导产业是()。
将“加役流”作为死刑的减刑始于()。
设曲线L的方程为y=lnx(1≤x≤e)。设D是由曲线L,直线x=1,x=e及x轴所围平面图形,求D的形心的横坐标。
Nowadays,oursocietyisbeingreshapedbyinformationtechnologies—computers,telecommunicationsnetworks,andotherdigitalsy
最新回复
(
0
)