首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E-ααT,α为3维非零列向量. (I)求A-1,并证明:α与Aα线性相关; (Ⅱ)若α=(α,α,α)T(a≠0),求正交矩阵Q,使得QTAQ=A; (Ⅲ)在(Ⅱ)的基础上,A与A2是否合同?说明理由.
设A=E-ααT,α为3维非零列向量. (I)求A-1,并证明:α与Aα线性相关; (Ⅱ)若α=(α,α,α)T(a≠0),求正交矩阵Q,使得QTAQ=A; (Ⅲ)在(Ⅱ)的基础上,A与A2是否合同?说明理由.
admin
2022-04-27
93
问题
设A=E-
αα
T
,α为3维非零列向量.
(I)求A
-1
,并证明:α与Aα线性相关;
(Ⅱ)若α=(α,α,α)
T
(a≠0),求正交矩阵Q,使得Q
T
AQ=A;
(Ⅲ)在(Ⅱ)的基础上,A与A
2
是否合同?说明理由.
选项
答案
[*] 故α与Aα线性相关. (Ⅱ)由α=(a,a,a)
T
(a≠0),知 α
T
α=3a
2
,αα
T
=[*](a,a,a)=a
2
[*], 故 A=[*] A为实对称矩阵. 由|λE-A|=0,得A的特征值为λ
1
=λ
2
=1,λ
3
=-2. 由(1·E-A)x=0,得A的特征向量为 α
1
=(-1,1,0)
T
,α
2
=(1,1,-2)
T
(已正交). 由(-2E-A)x=0,得A的特征向量为α
3
=(1,1,1)
T
. 将α
1
,α
2
,α
3
单位化,得 γ
1
=[*](-1,1,0)
T
,γ
2
=[*](1,1,-2)
T
,γ
3
=[*](1,1,1)
T
令Q=(γ
1
,γ
2
,γ
3
),为正交矩阵,使得 Q
-1
AQ=Q
T
AQ=[*] (Ⅲ)由A
2
=[*],|XE-A
2
|=0,得A
2
的特征值为1,1,4.而A的正、负惯性指数为P
A
=2,q
A
=1.A
2
的正、负惯性指数为[*],故A与A
2
不合同.
解析
转载请注明原文地址:https://kaotiyun.com/show/pLR4777K
0
考研数学三
相关试题推荐
设A,B同时发生,则C发生.证明:P(C)≥P(A)+P(B)=1.
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状,若它在进入大气层开始燃烧的前3s内,减少了体积的,问
设矩阵1,2,…,n),则线性方程组ATx=b的解是_____.
在函数f(x)=中,x3的系数是__________.
设数列{un},{vn}满足其中m,M是大于零的常数,vn≠0(n=1,2,…),考虑以下命题:①若级数发散,则必发散;②若级数收敛,则必收敛;③级数同时收敛或发散;④当级数必收敛,且其和必介于m与M之间,其中正确的个数是
由于折旧等因素,某机器转售价格P(t)是时间t(周)的减函数P(t)=,其中A是机器的最初价格,在任何时间t,机器开动就能产生的利润,则使转售出去总利润最大时机器使用的时间t=_________________________。(In2≈0.693)
设常数a>0,讨论曲线y=ax与曲线y=2lnx的公共点的个数.
设A为3阶方阵,如果A—1的特征值是1,2,3,则|A|的代数余子式A11+A22+A33=__________.
设函数f(t)有二阶连续的导数,=__________.
设f(x)在(-∞,+∞)上有定义,x0≠0为函数f(x)的极大值点,则().
随机试题
内部动稳定校验的计算公式为()。
涉外票据的法律适用原则中,当票据丧火,失票人清求保全票据权利的程序,适用()。
一个人要变成“社会人”,不可或缺的条件包括()。
有些教师没有学过系统的教育知识,这样的教师对学生有什么影响?
全国外出农民工与本地农民工人数相差最大的一年是()年。
在人力资源管理中,人们经常提到员工的工作满意度问题,普遍认为,提高员工的工作满意度,可以提高企业的绩效。以下哪项如果为真,最能反驳上述结论?
Thesadtruthisthatecosystemsare______fragileandintenselycomplicated.
Typically,aparentholdsthebaby______theleftsideofhisorherbody.
(1)WhenoutsourcingcompanyKeaneInc.hiredJyotiTaneja10monthsagotoworkinitsGurgaon,India,offices,herparentswere
Sincethe(publish)______ofthebook,overonemillionreadershavereadit,
最新回复
(
0
)