首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E-ααT,α为3维非零列向量. (I)求A-1,并证明:α与Aα线性相关; (Ⅱ)若α=(α,α,α)T(a≠0),求正交矩阵Q,使得QTAQ=A; (Ⅲ)在(Ⅱ)的基础上,A与A2是否合同?说明理由.
设A=E-ααT,α为3维非零列向量. (I)求A-1,并证明:α与Aα线性相关; (Ⅱ)若α=(α,α,α)T(a≠0),求正交矩阵Q,使得QTAQ=A; (Ⅲ)在(Ⅱ)的基础上,A与A2是否合同?说明理由.
admin
2022-04-27
42
问题
设A=E-
αα
T
,α为3维非零列向量.
(I)求A
-1
,并证明:α与Aα线性相关;
(Ⅱ)若α=(α,α,α)
T
(a≠0),求正交矩阵Q,使得Q
T
AQ=A;
(Ⅲ)在(Ⅱ)的基础上,A与A
2
是否合同?说明理由.
选项
答案
[*] 故α与Aα线性相关. (Ⅱ)由α=(a,a,a)
T
(a≠0),知 α
T
α=3a
2
,αα
T
=[*](a,a,a)=a
2
[*], 故 A=[*] A为实对称矩阵. 由|λE-A|=0,得A的特征值为λ
1
=λ
2
=1,λ
3
=-2. 由(1·E-A)x=0,得A的特征向量为 α
1
=(-1,1,0)
T
,α
2
=(1,1,-2)
T
(已正交). 由(-2E-A)x=0,得A的特征向量为α
3
=(1,1,1)
T
. 将α
1
,α
2
,α
3
单位化,得 γ
1
=[*](-1,1,0)
T
,γ
2
=[*](1,1,-2)
T
,γ
3
=[*](1,1,1)
T
令Q=(γ
1
,γ
2
,γ
3
),为正交矩阵,使得 Q
-1
AQ=Q
T
AQ=[*] (Ⅲ)由A
2
=[*],|XE-A
2
|=0,得A
2
的特征值为1,1,4.而A的正、负惯性指数为P
A
=2,q
A
=1.A
2
的正、负惯性指数为[*],故A与A
2
不合同.
解析
转载请注明原文地址:https://kaotiyun.com/show/pLR4777K
0
考研数学三
相关试题推荐
设事件A,B独立.证明:事件A,都是独立的事件组.
(1)叙述并证明一元函数微分学中的罗尔定理;(2)叙述并证明一元函数微分学中的拉格朗日中值定理.
设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程xex一yey=zex所确定,求du.
设总体X与Y都服从正态分布N(0,σ2),已知X1,X2,…,Xm与Y1,Y2,…,Yn均是来自正态总体X与Y的两个相互独立的简单随机样本,统计量服从t(n)分布,则m与n应满足的关系为()
曲线y=1/x+In(1+ex),渐近线的条数为().
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)—g(b)=0.g(x)≠0.任意x∈(a,b);
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)-2ex|≤(x-1)2,研究函数f(x)在x=1处的可导性.
设y=f(x)在[0,+∞)上有连续的导数,f(x)的值域为[0,+∞),且f’(x)>0,f(0)=0.又x=φ(y)为y=f(x)的反函数,对于常数a>0,b>0,试证明:
设f(x)=sinx,f[φ(x)]=1-x2,则φ(x)=________,定义域为________.
随机试题
国家实行房地产价格评估人员资格认证制度。()
哲学家()认为“人只有通过教育才能成为一个人,人是教育的产物”。
A.36.7~37.7℃B.36.9~37.9℃C.37.3~38.0℃D.38.1~39.0℃肛测法的正常体温是()
Bental手术
某女,月经20天一行,量多,7天即净,为某女,月经周期26天,经量多如常人两倍,7天即净,为
“筋之余”为
甲乙共谋教训其共同的仇人丙。由于乙对丙有夺妻之恨,暗藏杀丙之心,但未将此意告诉甲。某日,甲、乙二人共同去丙处。为确保万无一失,甲、乙以入室盗窃为由邀请不知情的丁在楼下望风。进人丙的房间后,甲、乙同时对丙拳打脚踢,致丙受伤死亡。甲、乙二人旋即逃离现场。在逃离
【背景资料】某大型综合体育馆工程,发包方(简称“甲方”)通过邀请招标的方式确定本工程由承包商乙中标,双方签订了工程总承包合同。在征得甲方书面同意的情况下,承包商乙将桩基础工程分包给具有相应资质的专业分包商丙,并签订了专业分包合同。合同履
银行中间业务发展的基础是()的创新。
使用VC6打开考生文件夹下的源程序文件modil.cpp,该程序运行时有错误,请改正程序中的错误。本题的功能是:从键盘输入字符串S,然后输出字符串S中的字符个数。注意:不要改动main函数,不能增行或删行,也不能更改程序的结构,错误的语
最新回复
(
0
)