首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1*(x)=xe—x+e—2x,y2*(x)=xe—x+xe—2x,y3*(x)=xe—x+e—2x+xe—2x是某二阶线性常系数微分方程y″+py′+qy=f(x)的三个特解. 求这个方程和它的通解.
已知y1*(x)=xe—x+e—2x,y2*(x)=xe—x+xe—2x,y3*(x)=xe—x+e—2x+xe—2x是某二阶线性常系数微分方程y″+py′+qy=f(x)的三个特解. 求这个方程和它的通解.
admin
2019-01-29
124
问题
已知y
1
*
(x)=xe
—x
+e
—2x
,y
2
*
(x)=xe
—x
+xe
—2x
,y
3
*
(x)=xe
—x
+e
—2x
+xe
—2x
是某二阶线性常系数微分方程y″+py′+qy=f(x)的三个特解.
求这个方程和它的通解.
选项
答案
由线性方程解的叠加原理 y
1
(x) =y
3
*
(x)—y
2
*
(x)=e
—2x
, y
2
(x) =y
3
*
(x)—y
1
*
(x)=xe
—2x
均是相应的齐次方程的解,它们是线性无关的.于是该齐次方程的特征根是重根λ= —2,相应的特征方程为 (λ+2)
2
=0, 即 λ
2
+4λ+4=0. 原方程为 y″+4y′+4y=f(x). ① 由于y
*
(x)=xe
—x
是它的特解,求导得 y
*
′(x) =e
—x
(1—x), y
*
″(x) =e
—x
(x—2). 代入方程①得 e
—x
(x—2)+4e
—x
(1—x)+4xe
—x
=f(x) f(x)=(x+2)e
—x
原方程为y″+4y′+4y=(x+2)e
—x
,其通解为 y=C
1
e
—2x
+C
2
xe
—2x
+xe
—x
,其中C
1
,C
2
为[*]常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Kwj4777K
0
考研数学二
相关试题推荐
设函数f(x)=(x>0),证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+0(x2),并求常数A,B.
求极限:.
二次积分∫02dxf(x,y)dy写成另一种次序的积分是()
设f(x)和g(x)是对x的所有值都有定义的函数,具有下列性质:(1)f(x+y)=f(x)g(y)+f(y)g(x);(2)f(x)和g(x)在x=0处可微,且当x=0时,f(0)=0,g(0)=1,f’(0)=1,g’(0)=0.
若函数f(x)在(0,+∞)上有定义,在x=1点处可导,且对于任意的正数a,b总有f(ab)=f(a)+f(b),证明:f(x)在(0,+∞)上处处可导,且f’(x)=.
求微分方程y"+2y’+2y=2e一xcos2的通解.
特征根为r1=0,r2,3=±i的特征方程所对应的三阶常系数线性齐次微分方程为____________.
已知四元二个方程的齐次线性方程组的通解为X=k1[1,0,2,3]T+k2[0,1,一l,1]T,求原方程组.
设向量组α2,α3,α4线性无关,则下列向量组中,线性无关的是()
设f(x)在[0,1]上二阶可导,且f’’(x)<0.证明:
随机试题
把审美经验视为游戏活动的美学家有【】
反胃的主要病机是吐酸的主要病机是
以下关于ARDS的临床特点和实验室检查,哪二项是正确的
A.贝氏隐孢子虫B.火鸡隐孢子虫C.鼠隐孢子虫D.微小隐孢子虫E.安氏隐孢子虫寄生于禽类法氏囊、泄殖腔等器官的隐孢子虫是
属于心虚胆怯型心悸的主症是属于阴虚火旺型心悸的主症是
背景某医院门诊楼,位于市中心区域,建筑面积28326m2,地下一层,地上十层,檐高33.7m。框架一剪力墙结构,筏板基础,基础埋深7.8m,底板厚度1100mm,混凝土强度等级C30,抗渗等级P8。室内地面铺设实木地板,工程精装修交工。2012年
贷款人应要求借款人以()提出个人贷款申请,并要求借款人提供能够证明其符合贷款条件的相关资料。
欧洲谚语说:“钉子缺,蹄铁卸;蹄铁卸,战马蹶;战马蹶,骑士绝;骑士绝,战事折;战事折,国家灭”,这说明()。
Alpineskiing
Formanywomenchoosingwhethertoworkornottoworkoutsidetheirhomeisaluxury:theymustworktosurvive.Othersfacea
最新回复
(
0
)