首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)和g(x)是对x的所有值都有定义的函数,具有下列性质: (1)f(x+y)=f(x)g(y)+f(y)g(x); (2)f(x)和g(x)在x=0处可微,且当x=0时,f(0)=0,g(0)=1,f’(0)=1,g’(0)=0.
设f(x)和g(x)是对x的所有值都有定义的函数,具有下列性质: (1)f(x+y)=f(x)g(y)+f(y)g(x); (2)f(x)和g(x)在x=0处可微,且当x=0时,f(0)=0,g(0)=1,f’(0)=1,g’(0)=0.
admin
2016-06-25
79
问题
设f(x)和g(x)是对x的所有值都有定义的函数,具有下列性质:
(1)f(x+y)=f(x)g(y)+f(y)g(x);
(2)f(x)和g(x)在x=0处可微,且当x=0时,f(0)=0,g(0)=1,f’(0)=1,g’(0)=0.
证明:f(x)对所有x都可微,且f’(x)=g(x).
选项
答案
由于f(x),g(x)在x=0处可微,所以有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/tIt4777K
0
考研数学二
相关试题推荐
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与求y=y(x).
以y=C1ex+ex(C2cosx+C3sinx)为通解的三阶常系数齐次线性微分方程为________.
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1,k2,…,kn)f(ξ).
设f(x)在[1,+∞)内可导,f′(x)<0且f(k)-∫1nf(x)dx.证明:{an}收敛且0≤an≤f(1).
设f(x)∈C[a,b],在(a,b)内二阶可导,且f″(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设a>0,讨论方程aex=x2根的个数.
某立体上、下底面平行,且与x轴垂直,若平行于底面的截面面积A(x)是x的不高于二次的多项式,试证该立体体积为V=(B1+4M+B2)其中h为立体的高,B1,B2分别是底面面积,M为中截面面积。
设f(x)在[0,n](n为自然数,n≥2)上连续,f(0)=f(n),证明:存在ξ,ξ+1∈[0,n],使f(ε)=f(ε+1).
已知抛物线y=px2+qx(其中p0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S.p值和q值为何值时,S达到最大?
某养殖场饲养两种鱼,若甲种鱼放养x(万尾),乙种鱼放养y(万尾),收获时两种鱼的收获量分别为(3-αx-βy)x和(4-βx-2αy)y(α>β>0)求使产鱼总量最大的放养数。
随机试题
Ⅱ期霍奇金病的病变分布为
女性,39岁,患溃疡性结肠炎6年,近两周每日口服泼尼松60mg,SASP4g,患者出现严重的进行性稀便和腹痛,体重下降4.5kg。查体:T39℃,P120次/分,BP90/60mmHg,腹膨隆,右下腹压痛(+),肠鸣音消失,白细胞18×109/L,
按照《担保法》规定,质押分为()。
由定序尺度计量形成,表现为类别,通常用文字表述,但有顺序的统计数据类型是()。
小学生有错误行为时,家长便限制他看动画片,不让其从事有趣的活动,属于()。
根据上表,下列表述正确的是()2003年,广东第三产业占GDP比重比2002年增长了()个百分点?
“三个世界”理论
产销直接挂钩
A、Howancientphilosophersmeasuredthedistancebetweenheavenlybodies.B、Howancientphilosophersexplainedthecauseofane
It【C1】______aroundnineo’clockwhenIdrove【C2】______homefromworkbecauseitwasalreadydark.AsIapproachedthegatesIsw
最新回复
(
0
)