首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2002年试题,十一)已知A,B为三阶矩阵,且满足2A-1B=B-4E,其中E是三阶单位矩阵. (1)证明:矩阵A-2E可逆; (2)若求矩阵A.
(2002年试题,十一)已知A,B为三阶矩阵,且满足2A-1B=B-4E,其中E是三阶单位矩阵. (1)证明:矩阵A-2E可逆; (2)若求矩阵A.
admin
2013-12-18
117
问题
(2002年试题,十一)已知A,B为三阶矩阵,且满足2A
-1
B=B-4E,其中E是三阶单位矩阵.
(1)证明:矩阵A-2E可逆;
(2)若
求矩阵A.
选项
答案
由题设,2A
-1
B=B一4E→2A
-1
B=AB一4A→AB一2B=4A→(A一2E)B=4A一8E+8E→(A一2E)B=4(A一2E)+8E→(A一2E)(B一4E)=8E→(A一2E)[*](B一4E)=E因此A-2E可逆,且(A一2E)
-1
=[*]同时A=2E+8(B-4E)
-1
,由已知[*]则[*]且(B一4E)
-1
可求初等行变换求得为[*]所以[*]
解析
证明矩阵可逆的方法有n阶矩阵A可逆
=P
1
P
2
……P
s
,其中只为初等矩
阵营齐次方程组Ax=0只有零解
,非齐次方程组Ax=b总有唯一解
A的特征值全不为0,如果在已知一矩阵等式的情况下,讨论矩阵的可逆性问题,一般应将已知等式化简为逆矩阵的定义形式进行分析.
转载请注明原文地址:https://kaotiyun.com/show/L134777K
0
考研数学二
相关试题推荐
[2004年]设n阶矩阵A与B等价,则必有().
(94年)设有向量组α1(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10).则该向量组的极大无关组是
(01年)设A是n阶矩阵,α是n维列向量,且秩=秩(A),则线性方程组【】
(2002年)(1)验证函数满足微分方程y’’+y’+y=ex(2)利用(1)的结果求幂级数的和函数.
(04年)设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)β可由α1,α2,α3惟一地线
[2007年]设线性方程组(I)与方程(Ⅱ):x1+2x2+x3=a-1.有公共解.求a的值与所有公共解.
已知方程=k在区间(0,1)内有实根,确定常数k的取值范围.
(2005年)设其中D={(x,y)|x2+y2≤1},则()
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x)其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6)处的切线方程。
∫sinxdx/(1+sinx).
随机试题
慢性房颤最常见的并发症为
A、不致出现过敏现象B、柔软、滑润,无板硬、黏着不适感C、不会刺激皮肤引起皮炎D、能使疮口早日愈合E、富有黏性,能固定患部,使患部减少活动使用油膏的主要优点有
企业进行会计数字比较的方式包括()。
以下关于生活常识,说法不正确的是()。
旅游行业核心价值观中的“游客为本”与“服务至诚”之间是()的关系。
社会工作者小陈负责“关爱社区失独老人”服务项目,为了完成项目的各项工作,他招募了一批护理、法律等方面的志愿者参与到项目中,下列为这些志愿者准备的培训内容,符合要求的是()
国务院全体会议由国务院总理、副总理、各部部长、各委员会主任、审计长、秘书长和()组成。
近年来,伯来鸟的数量急剧减少,这种肉食鸟一般栖息于平原,如农场或牧场。一些鸟类学家认为这是由于一种新型杀虫剂导致伯来鸟赖以为食的昆虫急剧减少的结果。以下哪项中提出来的问题最不能帮助我们重新判断上述推理是否有效?
Thefollowingisamenuofamobile(移动的)phone.Afterreadingit,youarerequiredtofindtheitemsequivalentto(与......等同)th
Thetendencynowadaystowanderinwildernessesisdelightfultosee.Thousandsoftired,nerve-shaking,over-civilizedpeoplea
最新回复
(
0
)