首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2011年)设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x-y=0,x+y=2与y=0所围成的区域。 (Ⅰ)求边缘概率密度fX(x); (Ⅱ)求条件概率密度fX|Y(x|y)。
(2011年)设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x-y=0,x+y=2与y=0所围成的区域。 (Ⅰ)求边缘概率密度fX(x); (Ⅱ)求条件概率密度fX|Y(x|y)。
admin
2021-01-25
48
问题
(2011年)设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x-y=0,x+y=2与y=0所围成的区域。
(Ⅰ)求边缘概率密度f
X
(x);
(Ⅱ)求条件概率密度f
X|Y
(x|y)。
选项
答案
(Ⅰ)已知直线所围成的图形如图所示,因为(X,Y)在区域G上服从均匀分布,且G的面积是1,则(X,Y)的联合密度函数为 [*] 因为f
X
(x)=∫
-∞
+∞
f(x,y)dy,则当x<0或者x>2时,f
X
(x)=0。 当0≤x<1时,f
X
(x)=∫
0
x
1dy=x; 当1≤z≤2时,f
X
(z)=∫
0
2-x
1dy=2-x。 故f
X
(x)=[*] (Ⅱ)因为f
X|Y
(x|y)=f(x,y)/f
Y
(y),且当y<0或y≥1时,f
Y
(y)=0;当0≤y<1时,f
Y
(y)=∫
y
2-y
1dx2-2y,所以当0<y<1时,有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Yyx4777K
0
考研数学三
相关试题推荐
设函数f’(x)在[a,b]上连续,且f(A)=0,证明:
设F(x)=f(x)g(x),其中函数f(x),g(x)在(一∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2ex.(1)求F(x)所满足的一阶方程;(2)求出F(x)的表达式.
设连续型随机变量X的分布函数F(x)=求:(Ⅰ)常数A;(Ⅱ)X的密度函数f(x);
设随机变量X在区间(0,1)上服从均匀分布,在X=x(0<x<1)的条件下,随机变量Y在区间(0,x)上服从均匀分布.求:随机变量X和Y的联合概率密度;
设L:y=e—x(x≥0).(1)求由y=e—x、x轴、y轴及x=a(a>0)所围成平面区域绕x轴一周而得的旋转体的体积V(a).(2)设V(c)=,求c.
某保险公司对多年来的统计资料表明,在索赔户中被盗索赔户占20%,以X表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.[附表]设Φ(x)是标准正态分布函数.写出X的概率分布;
设函数f(x)在[a,b]上有三阶连续导数。(Ⅰ)写出f(x)在[a,b]上带拉格朗日余项的二阶泰勒公式;(Ⅱ)证明存在一点η∈(a,b),使得
(1998年)设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份。随机地取一个地区的报名表,从中先后抽出两份。(Ⅰ)求先抽到的一份是女生表的概率p;(Ⅱ)已知后抽到的一份是男生表,求先抽到的一
(1998年)设周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为()
随机试题
直接碘量法的标准滴定溶液是碘溶液。
下列选项中,关于人权的说法哪些是正确的?
基本预备费的计算基数包括()
热泵机组的控制采用非标准通信协议时,应由热泵机组的()提供数据格式。
项目管理规划大纲可由()负责编制。
如某建筑工程承包合同中订有仲裁条款,则双方结算价款产生纠纷时,可()。
金融市场主要的资金需求方是()。
义务教育具有强制性、免费性和()。
从所给四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
Themanwantsinformationoncoursesfor
最新回复
(
0
)