首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2011年)设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x-y=0,x+y=2与y=0所围成的区域。 (Ⅰ)求边缘概率密度fX(x); (Ⅱ)求条件概率密度fX|Y(x|y)。
(2011年)设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x-y=0,x+y=2与y=0所围成的区域。 (Ⅰ)求边缘概率密度fX(x); (Ⅱ)求条件概率密度fX|Y(x|y)。
admin
2021-01-25
52
问题
(2011年)设二维随机变量(X,Y)服从区域G上的均匀分布,其中G是由x-y=0,x+y=2与y=0所围成的区域。
(Ⅰ)求边缘概率密度f
X
(x);
(Ⅱ)求条件概率密度f
X|Y
(x|y)。
选项
答案
(Ⅰ)已知直线所围成的图形如图所示,因为(X,Y)在区域G上服从均匀分布,且G的面积是1,则(X,Y)的联合密度函数为 [*] 因为f
X
(x)=∫
-∞
+∞
f(x,y)dy,则当x<0或者x>2时,f
X
(x)=0。 当0≤x<1时,f
X
(x)=∫
0
x
1dy=x; 当1≤z≤2时,f
X
(z)=∫
0
2-x
1dy=2-x。 故f
X
(x)=[*] (Ⅱ)因为f
X|Y
(x|y)=f(x,y)/f
Y
(y),且当y<0或y≥1时,f
Y
(y)=0;当0≤y<1时,f
Y
(y)=∫
y
2-y
1dx2-2y,所以当0<y<1时,有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Yyx4777K
0
考研数学三
相关试题推荐
假设随机变量X与Y同分布,X的概率密度为已知事件A={X>a}和B={Y>a}独立,且P(A+B)=3/4,求常数a;
设A=当a,b为何值时,存在矩阵C使得AC—CA=B,并求所有矩阵C。
设函数f(x)在(-∞,+∞)内二阶可导,且f(x)和fˊˊ(x)在(-∞,+∞)内有界.证明:fˊ(x)在(-∞,+∞)内有界.
设随机变量X在区间(0,1)上服从均匀分布,在X=x(0<x<1)的条件下,随机变量Y在区间(0,x)上服从均匀分布.求:随机变量X和Y的联合概率密度;
某保险公司对多年来的统计资料表明,在索赔户中被盗索赔户占20%,以X表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.[附表]设Φ(x)是标准正态分布函数.利用棣莫弗一拉普拉斯中心极限定理,求被盗索赔户不少
(1998年)设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份。随机地取一个地区的报名表,从中先后抽出两份。(Ⅰ)求先抽到的一份是女生表的概率p;(Ⅱ)已知后抽到的一份是男生表,求先抽到的一
(1998年)设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0.试证存在ξ,η∈(a,b),使得
(1998年试题,二)函数f(x)=(x2一x一2)|x3一x|的不可导点的个数为()。
随机试题
甲企业拥有一项商业秘密,乙企业采取不正当的手段盗取了该商业秘密后将该商业秘密转让给了知情的丙企业。这种情况下,乙企业的行为构成侵犯商业秘密,丙企业的被动接受也构成侵犯商业秘密。()
肺脓肿患者经抗生素积极治疗3个月余,脓腔直径为6厘米,有咯血、量多。对该患者的最佳处理是
正方形截面杆Ab,力f作用在xOy平面内,与x轴夹角α。杆距离B端为a的横截面上最大正应力在α=45°时的值是α=0时值的()。
教育在个体身心发展中起的作用是无条件的。()
当遇到其职责范围内的紧急情形,即使是在非工作时间,人民警察也必须履行职责。这是由()所作的规定。
学校田径运动会有4个竞赛项目:100米、200米、400米和800米。二班有三位男生建国、小杰、大牛和三位女生丹丹、小颖、淑珍参加。运动会有两个规定:(1)每个项目必须男女同时参加或同时不参加。(2)每人只能参加一个项目。
甲因市场摊位摆放不规范与工商局人员发生口角,抽刀将工商局执法人员小丁刺死。甲在检察机关准备提起公诉期间因病死亡,检察机关遂作出撤销案件的决定。此案撤销的根据是()
MP3是一种广泛使用的数字声音格式。下面关于MP3的叙述中,不正确的是______。
OneGoodReasontoLetSmallpoxLiveIt’snowafairbetthatwewillneverseethetotalextinctionofthesmallpoxvirus.The
Whattimearetheygoingtomeet?
最新回复
(
0
)