首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设连接两点A(0,1),B(1,0)的一条凸弧,P(x,y)为凸孤AB上的任意点(图6.5).已知凸弧与弦AP之间的面积为x3,求此凸弧的方程.
设连接两点A(0,1),B(1,0)的一条凸弧,P(x,y)为凸孤AB上的任意点(图6.5).已知凸弧与弦AP之间的面积为x3,求此凸弧的方程.
admin
2018-06-27
51
问题
设连接两点A(0,1),B(1,0)的一条凸弧,P(x,y)为凸孤AB上的任意点(图6.5).已知凸弧与弦AP之间的面积为x
3
,求此凸弧的方程.
选项
答案
设凸弧的方程为y=f(x),因梯形OAPC的面积为[*][1+f(x)]. 故 x
3
=∫
0
x
f(t)dt-[*][1+f(x)]. 两边对x求导,则得y=f(x)所满足的微分方程为 xy’-y=-6x
2
-1. (原方程中令x=0得0=0,不必另加条件,它与原方程等价) 其通解为 [*] =Cx-6x
2
+1. 对任意常数C,总有y(0)=1,即此曲线族均通过点A(0,1). 又根据题设,此曲线过点(1,0),即y(1)=0,由此即得C=5,即所求曲线为y=5x-6x
2
+1. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/L4k4777K
0
考研数学二
相关试题推荐
过原点作曲线的切线L,该切线与曲线及y轴围成平面图形n.求切线L的方程.
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
设曲线L的参数方程为x=φ(t)=t一sint,y=ψ(t)=1一cost(0≤t≤2π)求曲线L与x轴所围图形绕Oy轴旋转一周所成旋转体的体积V;
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
设二元可微函数F(z,y)在直角坐标系中可写成F(x,y)=f(x)+g(y),其中f(x),g(y)均为可微函数,而在极坐标系中可写成求此二元函数F(x,y).
设方程y3+sin(xy)一e2x=0确定曲线y=y(x).求此曲线y=y(x)在点(0,1)处的曲率与曲率半径.
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.求这个方程和它的通解:
设y=y(x)是由方程x2+y=tan(x一y)确定的隐函数,且y(0)=0,则y’’(0)=___________.
设A是m×n矩阵,且方程组Ax=b有解,则
随机试题
硝酸具有酸的通性,能与活波金属反应放出氢气。()
票据诈骗罪的客观方面表现为()。
有线电报和电话在19世纪末相继问世后,赫兹又证明了电磁波的存在,意大利人马可尼在此基础上利用极为简陋的装置进行短距离无线电报试验取得成功。但在当时,人们认为电磁波是直线传输的,由于地理扁率影响,长距离传送信号是不可能的。马可尼经过多次试验,于1910年12
某班级中很多学生学习成绩差,思想品德差,班集体意识差,同学之间几乎没有合作行为,大部分人都不知道该做什么,怎么做,这个班级的班主任所采取的领导方式最可能是()。
我国国家主席、副主席任期()年。
稻草人谬误是指反驳者在没有任何证据或推理可用时,偷换对方的论点,然后把这个论点当作是对方的论点并加以推翻的一种逻辑错误。根据上述定义,下列反驳中存在稻草人谬误的是:
陈桥兵变
下列一台Catalyst4000显示交换表的命令及对应的显示信息均正确的是()。
努力乃其实质。除了征服须毕生为之努力的困难外,没有任何快乐可言。诚如叶芝所言,除了不可为的事情外,我们一生所获得的满足有多大,取决于我们所选择的困难有多强。罗伯特•弗罗斯特在谈及“承受痛苦时的快乐”时,其意相近。社会上宣扬的那种幸福观的致命缺陷就在于声称幸
ScienceFiction?NotAnyMoreSciencefictionhasoftenbeenthesourceofinspirationfornewtechnologies.Theexoskeleton
最新回复
(
0
)