首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2002年试题,十)设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0f’(0)≠0,fn(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0加时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
(2002年试题,十)设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0f’(0)≠0,fn(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0加时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
admin
2021-01-19
80
问题
(2002年试题,十)设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0f
’
(0)≠0,f
n
(0)≠0.证明:存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0加时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)-f(0)是比h
2
高阶的无穷小.
选项
答案
首先明确高阶无穷小的定义,即若f(x)是x
2
的高阶无穷小,则当且仅当[*][*]由题设,欲证结论等价于证明存在唯一一组实数λ
1
,λ
2
,λ
3
,使得[*] (1)式成立的必要条件是[*]λ
2
f(h)+λ
2
f(2h)+λ
3
f(3h)一f(0)=0,即λ
1
f(0)+λ
2
f(0)+λ
3
f(0)一f(0)=0,由已知f(0)≠0,因此λ
1
+λ
2
+λ
3
-1=0(2)又由已知f(x)在x=0的某邻域内具有二阶连续导数,从而可利用洛必达法则,由(1)式,[*] (3)同样此式成立的必要条件是[*]λf
’
(h)+2λ2f
’
(2h)+3λf
’
(3h)=0,即λ
1
f
’
(0)+2λ
2
f
’
(0)+3λ
3
f
’
(0)=0由已知f
’
(0)≠0,所以λ
1
+2λ
2
+3λ
3
=0(4)对(3)式继续应用洛必达法则,有[*]同理,由f
’
(0)=0,知λ
1
+4λ
2
+9λ
3
=0(5)综合(2),(4),(5)三式得一关于λ
1
,λ
2
,λ
3
的线性非齐次方程组[*]该方程组系数行列式为[*]所以方程组有唯一解,所以存在唯一一组实数λ
1
,λ
2
,λ
3
满足题设要求.
解析
本题还可利用麦克劳林展开式来得到关于λ
1
,λ
2
,λ
3
的方程组,即由
在上式中分别取x=h,2h,3h,则
因此λ
1
f(0)+λ
2
f(2h)+λ
3
f(3h)-f(0)=(λ
1
+λ
2
+λ
3
-1)f(0)+(λ
1
+2λ
2
+3λ
3
)f
’
(0)h+
(λ
1
+4λ
2
+9λ
3
)f
’
(0)h
2
+o(h
2
)由题设f(0)≠0,f
’
(0)≠0,f
n
(0)≠0,则要使上式左边当h→0时为h
2
的高阶无穷小,必应满足
由此同样得到关于λ
1
,λ
2
,λ
3
的方程组。
转载请注明原文地址:https://kaotiyun.com/show/L584777K
0
考研数学二
相关试题推荐
讨论方程lnx=kx的根的个数。
设f(x),g(x)均有二阶连续导数且满足f(0)>0,f′(0)=0,g(0)=0,则函数u(x,y)=f(x)∫1yg(t)dt在点(0,0)处取极小值的一个充分条件是
在xOy平面上,平面曲线方程y=,则平面曲线与x轴的交点坐标是________。
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=____.
设f(χ)=sinχ,f[φ(χ)]=1-χ2,则φ(χ)=_______,定义域为_______.
设函数y=y(χ)满足△y=△χ+o(△χ),且y(1)=1,则∫01y(χ)dχ=_______.
设z=z(x,y)由方程x一mz=φ(y一nz)所确定(其中m,n为常数,φ为可微函数),则=________.
曲线y=的斜渐近线为_______.
求分别满足下列关系式的f(x).1)f(x)=∫0xf(t)dt,其中f(x)为连续函数;2)f’(x)+xf’(一x)=x.
经过长期观察,人们发现鲑鱼在河中逆流行进时,如果相对于河水的速度为v,那么游T小时所消耗的能量E=cv3T,其中c是一个常数.假设水流的速度为4km/h,鲑鱼逆流而上200km,问它游多快才能使消耗的能量最少?
随机试题
为了保证建设工程的实施能够有足够的时间、空间、人力、财力和物力来保证计划的可行性,首先应在充分考虑( )等因素的前提下制定计划。
下列选项中,不属于贷前调查方法的是()。
下列对税负转嫁的说法,正确的是()。
生产物流控制内容不包括()。
在西方教育史上,被认为史现代教育代言人的是()
单位举办绿色环保宣传周活动,但是没有专项经费,宣传中也不允许耗费纸张,你怎么开展此次活动?
按照《巴塞尔协议Ⅲ》的要求,为了防止银行信贷增长过快并导致系统性风险的积累,要求银行在经济上行期提取一定比例的(),以便经济下行时释放。
在FDM中,主要通过(1)技术,使各路信号的带宽(2)。使用FDM的所有用户(3)。从性质上说,FDM比较适合于传输(4),FDM的典型应用是(5)。
Itisduetotheinventionofthecomputerthatmanhasbeenabletoworksomanywondersinthepastfewyears.Acase______is
A.decreasingB.underlinesC.deliveredD.missionsE.becauseF.putoffG.demandH.thoughI.playJ.improvingK.t
最新回复
(
0
)