首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2002年试题,十)设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0f’(0)≠0,fn(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0加时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
(2002年试题,十)设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0f’(0)≠0,fn(0)≠0.证明:存在唯一的一组实数λ1,λ2,λ3,使得当h→0加时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
admin
2021-01-19
115
问题
(2002年试题,十)设函数f(x)在x=0的某邻域内具有二阶连续导数,且f(0)≠0f
’
(0)≠0,f
n
(0)≠0.证明:存在唯一的一组实数λ
1
,λ
2
,λ
3
,使得当h→0加时,λ
1
f(h)+λ
2
f(2h)+λ
3
f(3h)-f(0)是比h
2
高阶的无穷小.
选项
答案
首先明确高阶无穷小的定义,即若f(x)是x
2
的高阶无穷小,则当且仅当[*][*]由题设,欲证结论等价于证明存在唯一一组实数λ
1
,λ
2
,λ
3
,使得[*] (1)式成立的必要条件是[*]λ
2
f(h)+λ
2
f(2h)+λ
3
f(3h)一f(0)=0,即λ
1
f(0)+λ
2
f(0)+λ
3
f(0)一f(0)=0,由已知f(0)≠0,因此λ
1
+λ
2
+λ
3
-1=0(2)又由已知f(x)在x=0的某邻域内具有二阶连续导数,从而可利用洛必达法则,由(1)式,[*] (3)同样此式成立的必要条件是[*]λf
’
(h)+2λ2f
’
(2h)+3λf
’
(3h)=0,即λ
1
f
’
(0)+2λ
2
f
’
(0)+3λ
3
f
’
(0)=0由已知f
’
(0)≠0,所以λ
1
+2λ
2
+3λ
3
=0(4)对(3)式继续应用洛必达法则,有[*]同理,由f
’
(0)=0,知λ
1
+4λ
2
+9λ
3
=0(5)综合(2),(4),(5)三式得一关于λ
1
,λ
2
,λ
3
的线性非齐次方程组[*]该方程组系数行列式为[*]所以方程组有唯一解,所以存在唯一一组实数λ
1
,λ
2
,λ
3
满足题设要求.
解析
本题还可利用麦克劳林展开式来得到关于λ
1
,λ
2
,λ
3
的方程组,即由
在上式中分别取x=h,2h,3h,则
因此λ
1
f(0)+λ
2
f(2h)+λ
3
f(3h)-f(0)=(λ
1
+λ
2
+λ
3
-1)f(0)+(λ
1
+2λ
2
+3λ
3
)f
’
(0)h+
(λ
1
+4λ
2
+9λ
3
)f
’
(0)h
2
+o(h
2
)由题设f(0)≠0,f
’
(0)≠0,f
n
(0)≠0,则要使上式左边当h→0时为h
2
的高阶无穷小,必应满足
由此同样得到关于λ
1
,λ
2
,λ
3
的方程组。
转载请注明原文地址:https://kaotiyun.com/show/L584777K
0
考研数学二
相关试题推荐
[*]
设A是3阶矩阵,有特征值λ1=1,λ2=-1,λ3=0,对应的特征向量分别是ξ1,ξ2,ξ3,k1,k2是任意常数,则非齐次方程组Ax=ξ1﹢ξ2z的通解是()
设D为y=χ,χ=0,y=1所围成区域,则arctanydχdy=().
设y=y(x)是由y3+(x+1)y+x2=0及y(0)=0所确定,则=___________.
已知非齐次线性方程组(Ⅰ)与(Ⅱ)同解,其中则a=_______。
已知向量组α1=(1,1,1,1),α2=(2,3,4,4),α3=(3,2,1,k)所生成的向量空间的维数是2,则k=__________.
已知二次型f(χ1,χ2,χ3)=χ12-2χ22+bχ32-4χ1χ2+4χ1χ3+2aχ2χ3(a>0)经正交变换化成了标准形f=2y12+2y22-7y32,求a=_______、b=_______的值和正交矩阵P=_______.
积分∫02dx∫x2e—y2dy=______。
求分别满足下列关系式的f(x).1)f(x)=∫0xf(t)dt,其中f(x)为连续函数;2)f’(x)+xf’(一x)=x.
(2013年)当χ→0时,1-cosχ.cos2χ.cos3χ与aχn为等价无穷小,求n与a的值.
随机试题
在RHEL5系统中,若在“/etc/shadow”文件内jerry用户的密码字串前添加“!!”字符,将导致()结果。
非职务技术成果的()。
房地产估价不仅必要,而且由于房地产量大面广及房地产交易、抵押、税收、征收、损害赔偿等多方面形成对房地产估价的大量需求,使得房地产估价在古今中外都是估价活动中的主流。()
当市场情况如下图所示时,下列说法正确的有( )。
向原普通股股东按其持股比例、以低于市价的某一特定价格配售一定数量新发行股票的融资行为是()。
下列对教学策略的基本特点叙述不正确的是()。
目前研究男女智力的性别差异的基本结论之一是()。
以下关于生活常识,说法不正确的是:
假定MyClass为一个类,则执行MyClass a b(2),*p;语句时,自动调用该类构造函娄( )次。
Unlikethescientist,theengineerisnotfreetoselecttheproblemwhichinterestshim;hemustsolvetheproblemsastheyaris
最新回复
(
0
)