首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有定义在(-∞,+∞)上的函数: (A)f(x)= (B)g(x)= (C)h(x)= (D)m(x)= 则 (I)其中在定义域上连续的函数是____________; (II)以x=0为第二类间断点的函数是_________
设有定义在(-∞,+∞)上的函数: (A)f(x)= (B)g(x)= (C)h(x)= (D)m(x)= 则 (I)其中在定义域上连续的函数是____________; (II)以x=0为第二类间断点的函数是_________
admin
2017-12-11
79
问题
设有定义在(-∞,+∞)上的函数:
(A)f(x)=
(B)g(x)=
(C)h(x)=
(D)m(x)=
则
(I)其中在定义域上连续的函数是____________;
(II)以x=0为第二类间断点的函数是____________.
选项
答案
(I)B (Ⅱ)D
解析
(I)当x>0与x<0时上述各函数分别与某初等函数相同,故连续.从而只需再考察哪个函数在点x=0处连续.注意到若f(x)=
,其中g(x)在(-∞,0]连续h(x)在[0,+∞)连续.因f(x)=g(x)(x∈(-∞,0])
f(x)在x=0左连续.若又有g(0)=h(0)
f(x)=h(x)(x∈[0,+∞))
f(x)在x=0右连续.因此f(x)在x=0连续.(B)中的函数g(x)满足:sinx|
x=0
=(cosx-1)|
x=0
,又sinx,cosx-1均连续
g(x)在x=0连续.因此,(B)中的g(x)在(-∞,+∞)连续.应选(B).
(Ⅱ)关于(A):由
x=0是f(x)的第一类间断点(跳跃间断点).
关于(C):由
e≠h(0)
=0是h(x)的第一类间断点(可去间断点).
已证(B)中g(x)在x=0连续.因此选(D).
或直接考察(D).由
=+∞
x=0是m(x)的第二类间断点.
转载请注明原文地址:https://kaotiyun.com/show/L5r4777K
0
考研数学一
相关试题推荐
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
求直线旋转一周所产生的曲面方程.
已知向量的始点A(4,0,5),的方向余弦为则B的坐标为()
设则α,β的值为_________.
(1)若A可逆且A~B,证明:A*~B*;(2)若A~B,证明:存在可逆矩阵P,使得AP~BP.
设有大小相同、标号分别为1,2,3,4,5的五个球,同时有标号为1,2,…,10的十个空盒.将五个球随机放入这十个空盒中,设每个球放入任何一个盒子的可能性都是一样的,并且每个空盒可以放五个以上的球,计算下列事件的概率:A=“某指定的五个盒子中各有一个球
设L为椭圆,其周长为π,则(2xy+3x2+5y2)ds=________。
从一批轴料中取15件测量其椭圆度,计算得S=0.025,问该批轴料椭圆度的总体方差与规定的σ2=0.0004有无显著差别?(a=0.05,椭圆度服从正态分布)
设f(x)在[0,1]上连续,在(0,1)内可导,且f(x)=0,f(x)=1,试证:对任意给定的正数a,b,在(0,1)内存在不同的点ξ,η,使
随机试题
与津液的生成有密切关系的是
关于临床实验的知情同意,下列表述正确的是()。
A.放射治疗B.乳突凿开术C.颈淋巴结清扫术D.颞骨次全切除术或颞骨全切除术E.化疗
造釉细胞瘤为“临界瘤”的主要原因是()
甲公司与银行之间签订的房屋抵押合同,可否以口头的方式签订?为什么?设甲公司用于抵押的房屋是正在建造中的房屋,当事人办理了抵押登记后,银行能否对该房屋行使抵押权?
实施工程项目施工安全计划需要开展的工作主要有()。
当基岩表面接近于涵洞流水槽面标高时,孔径为3m的盖板涵,可采用()。
会计的基本职能是()。
根据《证券法》的规定,上市公司发生的下列情形中,应终止其股票上市的有()。
将大米300袋、面粉210袋和食用盐163袋按户分发给某受灾村庄的村民,每户分得的各种物资均为整数袋,余下的大米、面粉和食用盐的袋数之比为1:3:2,则该村有多少户村民?
最新回复
(
0
)