首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为( ).
[2011年] 设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为( ).
admin
2019-04-15
42
问题
[2011年] 设A为4×3矩阵,η
1
,η
2
,η
3
是非齐次线性方程组AX=β的3个线性无关的解,k
1
,k
2
为任意常数,则AX=β的通解为( ).
选项
A、(η
2
+η
3
)/2+k
1
(η
2
-η
1
)
B、(η
2
-η
3
)/2+k
1
(η
2
-η
1
)
C、(η
2
+η
3
)/2+k
1
(η
2
-η
1
)+k
2
(η
3
-η
1
)
D、(η
2
-η
3
)/2+k
1
(η
2
-η
1
)+k
2
(η
3
-η
1
)
答案
C
解析
解一 仅(C)入选.因n元非齐次线性方程组AX=b的线性无关的解向量最多的个数为n-秩(A)+1,故3-秩(A)+1≥3,即秩(A)≤1.又秩(A)≥1(如秩(A)=0,则A=0与AX=β≠0矛盾),故秩(A)=1,所以AX=0的一个基础解系含n-秩(A)=3=1-2个解向量,而η
3
-η
1
,η
2
-η
1
均为AX=0的非零解,因而它们为AX=0的基础解系.又(η
2
+η
3
)/2中的系数1/2+1/2=1.由命题2.4.4.1知,(η
2
+η
3
)/1为AX=β的一特解.于是AX=β的通解为
(η
2
+η
3
)/2+k
1
(η
2
-η
1
)+k
2
(η
3
-η
1
).
解二 由非齐次线性方程组AX=B通解的结构(该方程组的一特解加上对应齐次线性方程组AX=0的基础解系)可分别排除选项(A)、(B)、(D).事实上,(B)、(D)中的
为AX=0的解,不是AX=B的特解,可排除(B)、(D).又因AX=0的解η
2
-η
1
,η
3
-η
1
线性无关,故AX=0的基础解系至少包含2个解向量,从而排除(A).仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/L7P4777K
0
考研数学三
相关试题推荐
求微分方程的通解.
计算行列式.
已知随机变量X服从(1,2)上的均匀分布,在X=x条件下Y服从参数为x的指数分布,则E(XY)=________。
随机地向圆x2+y2=2x内投一点,该点落在任何区域内的概率与该区域的面积成正比,令X表示该点与原点的连线与x轴正半轴的夹角,求X的分布函数和概率密度。
设事件A与B互不相容,P(A)=0.4,P(B)=0.3,求
设A,B为随机事件,P(A)>0,则P(B|A)=1不等价于()
设A、B为两个随机事件,且BA,则下列式子正确的是()
若由曲线y=,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是().
a,b取何值时,方程组有解?
设随机变量X服从参数为λ的指数分布,且E(X-1)(X+2)]=8,则λ=______.
随机试题
Someconfusionhas______aboutwhocandothisjob.
产后恶露淋漓,涩滞不畅,色紫黯,小腹疼痛拒按,舌紫黯,脉涩。应首选
关于腰椎间盘突出症的叙述,下列哪项是错误的
城市用地具有自身的特殊规律,从而对城市布局具有重要的影响。城市用地的特征主要是:(),以及用地布局的不可逆性。
某透明媒质对于空气的临界角(指全反射)等于30°,光从空气射向媒质时的布儒斯特角是( )。
背景资料:某施工单位承接了一座多跨变截面预应力混凝土连续箱桥梁,大桥分为上下游两幅,每幅单箱顶板宽10.5m,底板宽6m。大桥采用钻孔灌注桩基础,双柱式桥墩(墩柱高15m至26m不等),普通钢筋混凝土盖梁。上部结构0号采用墩顶混凝土现浇施工,临时固结构
土地增值税采用的是超率累进税率。()
有甲、乙连续两项工作,甲工作的最早开始时间是第4天,乙工作的最早开始时间是第10天;甲工作和乙工作的持续时间分别是4天和5天,则甲工作的自由时差是()。
【C1】______thelackof【C2】______betweengiftedstudentsandtheirschools,itisnotsurprisingthatsuchstudentsoftenhave【C3】
Newtechnologylinkstheworldasneverbefore.Ourplanethasshrunk.It’snowa"globalvillage"wherecountriesareonlyseco
最新回复
(
0
)