首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I)α1,α2,α3,α4线性无关,则和(I)等价的向量组是 ( )
设向量组(I)α1,α2,α3,α4线性无关,则和(I)等价的向量组是 ( )
admin
2018-12-21
83
问题
设向量组(I)α
1
,α
2
,α
3
,α
4
线性无关,则和(I)等价的向量组是 ( )
选项
A、α
1
﹢α
2
,α
2
﹢α
3
,α
3
﹢α
4
.
B、α
1
﹢α
2
,α
2
﹢α
3
,α
3
﹢α
4
,α
4
﹢α
1
.
C、α
1
-α
2
,α
2
﹢α
3
,α
3
-α
4
,α
4
﹢α
1
.
D、α
1
,α
1
-α
2
,α
2
-α
3
,α
3
-α
4
,α
4
-α
1
.
答案
D
解析
两个向量组可以相互表出
两个向量组等价.
两个向量组等价
等秩,但反之不成立,即等秩不一定等价,但不等秩必不等价.
法一 用排除法.
α
1
,α
1
,α
3
,α
4
线性无关,则r(α
1
,α
2
,α
3
,α
4
)=4.
(A):只有3个向量.r(α
1
﹢α
2
,α
2
﹢α
3
,α
3
﹢α
4
)≤3.(I)和(A)不等价.
(B):因(α
1
﹢α
2
)-(α
2
﹢α
3
)﹢(α
3
﹢α
4
)-(α
4
﹢α
1
1)=0,向量组(B)线性相关.
r(α
1
﹢α
2
,α
2
﹢α
3
,α
3
﹢α
4
,α
4
﹢α
1
)≤3.故(I)和(B)不等价.
(C):(α
1
-α
2
)﹢(α
2
﹢α
3
)-(α
3
-α
4
)一(α
4
﹢α
1
)=0,向量组(C)线性相关.
r(α
1
-α
2
,α
2
﹢α
3
,α
3
-α
4
,α
4
﹢α
1
)≤3.故(I)和(C)也不等价.
由排除法知,应选(D).
法二 对于选项(D),令β
1
=α
1
,β
2
=α
1
-α
2
,β
3
=α
2
-α
3
,
β
4
=α
3
-α
4
,β
5
=α
4
-α
1
,则α
1
=β
1
,α
2
=α
1
-β
2
=β
1
-β
2
,α
3
=α
2
-β
3
=β
1
-β
2
-β
3
,α
4
=α
3
-β
4
=β
1
-β
2
-β
3
-β
4
,
故(I)和(D)可相互表出,是等价向量组,应选(D).
转载请注明原文地址:https://kaotiyun.com/show/L8j4777K
0
考研数学二
相关试题推荐
(2007年)设函数y=,则y(n)(0)=_______.
(2001年)已知矩阵且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是3阶单位阵,求X.
(2006年)微分方程y′=的通解是_______.
(1987年)设I=tf(tχ)dχ,其中f(χ)连续,S>0,t>0,则I的值【】
(1993年)设χ>0,常数a>e,证明:(a+χ)a<aa+χ
(2014年)设函数f(χ)=,χ∈[0,1].定义函数列:f1(χ)=f(χ),f2(χ)=f(f1(χ)),…,fn(χ)=f(fn-1(χ)),…记Sn是由曲线y=fn(χ),直线χ=1及χ轴所围成平面图形的面积,求极限nSn.
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α2,Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的。
1由拉格朗日中值定理,得arctan(x+1)一arctanx=,ξ∈(x,x+1).且当x→+∞时,ξ→+∞因此原式=
随机试题
简述无产阶级领袖的作用。
非酮症高渗性昏迷治疗,下列哪项正确
获得性血小板功能异常症,下列哪项检查结果是错误的
心主神志最主要的物质基础是
某房地产企业为增值税一般纳税人,2016年6月1日购买一地块开发房地产项目,支付地价款800万元,次年年末项目完工,当期销售其中的90%,取得含税销售收入2000万元,当期应纳增值税税额为()万元。
下列关于四川铁路的表述正确的有()。
现阶段我国逐步建立的社会公平保障体系的主要内容有()。
音乐教材编写的原则有_________、_________、_________、_________、综合性原则和开放性原则。
结合岗位,谈谈在以后的工作中,你如何贯彻知行、勤政、务实。
设已有定义:floatx;,则以下对指针变量P进行定义且赋初值的语句中正确的是()。
最新回复
(
0
)