首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若二次曲面的方程x2+3y2+z2+2axy+2xz+2yz=4经正交变换化为y12+4z12=4,则a=________。
若二次曲面的方程x2+3y2+z2+2axy+2xz+2yz=4经正交变换化为y12+4z12=4,则a=________。
admin
2019-03-23
67
问题
若二次曲面的方程x
2
+3y
2
+z
2
+2axy+2xz+2yz=4经正交变换化为y
1
2
+4z
1
2
=4,则a=________。
选项
答案
1
解析
本题等价于将二次型f(x,y,z)=x
2
+3y
2
+z
2
+2axy+2xz+2yz经正交变换后化为f=y
1
2
+4z
1
2
。由正交变换的特点可知,该二次型的特征值为1,4,0。由于矩阵的行列式值是对应特征值的乘积,且该二次型的矩阵为A=
,可知|A|= —(a—1)
2
=0,解得a=1。
转载请注明原文地址:https://kaotiyun.com/show/LHV4777K
0
考研数学二
相关试题推荐
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
设A为n阶正交矩阵,α和β都是n维实向量,证明:(1)内积(α,β)=(Aα,Aβ).(2)长度‖Aα‖=‖α‖.
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
设A是3阶不可逆矩阵,α1,α2是AX=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
设(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设①计算行列式|A|.②实数a为什么值时方程组AX=β有无穷多解?在此时求通解.
位于上半平面向上凹的曲线y=y(x)在点(0,1)处的切线斜率为0,在点(2,2)处的切线斜率为1.已知曲线上任一点处的曲率半径与的乘积成正比,求该曲线方程.
在某国,每年有比例为p的农村居民移居城镇,有比例为q的城镇居民移居农村。假设该国总人口数不变,且上述人口迁移的规律也不变。把n年后农村人口和城镇人口占总人口的比例依次记为xn和yn(xn+yn=1)。求关系式中的矩阵A;
设f(x)是连续函数,a,b为常数,则下列说法中不正确的是[].
随机试题
钙通道阻滞药主要具有哪些药理作用和临床应用?
培训过程中,()不能充分调动培训对象的积极性和主动性。
已知某白炽灯的额定电压是220V,正常发光时流过灯丝的电流为0.2A,则1min内流过灯丝的电流所做的功为()。
静不平衡和动不平衡是旋转体不平衡的形式。()
自汗、盗汗并见,其病机是
A.乳疬B.乳痨C.乳核D.乳发E.乳癖乳中结核,形如鸡卵,表面光滑,推之移动的单发肿块。多诊为
现场踏勘的技术方案编写完成后,工作单位的主管领导要亲自审核方案的(),经与技术人员论证后批准施行。
编制全国主体功能区规划需要妥善处理的关系包括()。
简述注意对幼儿活动和心理发展的意义。
ThefamousspystorybooksabouttheheroJamesBond(007)arewrittenby______.
最新回复
(
0
)