首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若二次曲面的方程x2+3y2+z2+2axy+2xz+2yz=4经正交变换化为y12+4z12=4,则a=________。
若二次曲面的方程x2+3y2+z2+2axy+2xz+2yz=4经正交变换化为y12+4z12=4,则a=________。
admin
2019-03-23
100
问题
若二次曲面的方程x
2
+3y
2
+z
2
+2axy+2xz+2yz=4经正交变换化为y
1
2
+4z
1
2
=4,则a=________。
选项
答案
1
解析
本题等价于将二次型f(x,y,z)=x
2
+3y
2
+z
2
+2axy+2xz+2yz经正交变换后化为f=y
1
2
+4z
1
2
。由正交变换的特点可知,该二次型的特征值为1,4,0。由于矩阵的行列式值是对应特征值的乘积,且该二次型的矩阵为A=
,可知|A|= —(a—1)
2
=0,解得a=1。
转载请注明原文地址:https://kaotiyun.com/show/LHV4777K
0
考研数学二
相关试题推荐
设A与B分别是m,n阶矩阵,证明
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为.①求A.②证明A+E是正定矩阵.
设α1,α2,…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
设3阶矩阵A=,A-1XA=XA+2A,求X.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
求下列函数的导数y′:(Ⅰ)y=arctan:(Ⅱ)y=sinχ.
设其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。a、b为何值时,g(x)在x=0处连续。
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
设A是4×5矩阵,且A的行向量组线性无关,则下列说法错误的是()
随机试题
适度满足自己的关心点和他人的关心点的冲突管理策略是()
快速响应
横切面组织中最外为表皮,维管束大多为有限外韧型,无髓的是横切面组织中最外为木栓层,维管束为无限限外韧型,一般有髓的是
关于微粉的流动性叙述错误的是()
相线对地标称电压为220V的TN系统配电线路的接地故障保护,其切断故障回路的时间应符合配电线路或仅供给固定式电气设备用电的末端线路,不大于()的规定。
定向资产管理合同中一般不包括()。
忠诚所属企业的主要表现是()。
【2014河北石家庄】艾利斯情绪ABC理论中,C代表了()。
【B1】【B10】
Anewstudyshowsthatstudentslearnmuchbetterthroughanactive,iterative(反复的)processthatinvolvesworkingthroughtheirm
最新回复
(
0
)