首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为 .①求A.②证明A+E是正定矩阵.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为 .①求A.②证明A+E是正定矩阵.
admin
2017-06-08
38
问题
二次型f(x
1
,x
2
,x
3
)=X
T
AX在正交变换X=QY下化为y
1
2
+y
2
2
,Q的第3列为
.①求A.②证明A+E是正定矩阵.
选项
答案
①条件说明 [*] 于是A的特征值为1,1,0,并且Q的第3列=[*](1,0,1)
T
是A的特征值为0的特征向量.记α
1
=(1,0,1)
T
,它也是A的特征值为0的特征向量. A是实对称矩阵,它的属于特征值1的特征向量都和α
1
正交,即是方程式x
1
+x
3
=0的非零解. α
2
=(1,0,-1)
T
,α
3
=(0,1,0)
T
是此方程式的基础解系,它们是A的特征值为1的两个特征向量. 建立矩阵方程 A(α
1
,α
2
,α
3
)=(0,α
2
,α
3
), 两边做转置,得 [*] 解此矩阵方程 [*] ②A+E也是实对称矩阵,特征值为2,2,1,因此是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/y0t4777K
0
考研数学二
相关试题推荐
[*]
20π
[*]
设f(x)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一点ε,使得
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
随机试题
下图为南半球中高纬度环流圈。读图回答下列问题。下列不属于土壤发育的主要影响因素的是()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定规律性。
患者,男,70岁。2年来感活动后心前区疼痛,并逐渐加重,有时伴头晕、黑蒙,自含硝酸甘油效果不佳。既往无高血压、糖尿病、高血脂等病史。查体:血压100/60mmHg,脉搏58次/分,双肺(一),心界不大,心尖部S1正常,可闻S4,胸骨右缘第2肋间可闻3/6级
A.祛寒除湿B.祛风止痒C.益肝明目D.活血止痛E.温脾止泻补骨脂具有的功效是
一般拔牙后要向病人说明的注意事项有哪些?
下列关于砌体房屋抗震计算不正确论述是______。
开放式基金出现巨额赎回时,基金管理人不应采取的措施是()。
由于特殊原因,转债发行人可申请豁免披露()。
案主自决必须具备的前提是()。
下列选项中,不会出现在Cisco路由器路由表中的是()。
最新回复
(
0
)