首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 已知∫-∞+∞ek∣x∣dx=1,则k=_________.
[2009年] 已知∫-∞+∞ek∣x∣dx=1,则k=_________.
admin
2019-04-05
52
问题
[2009年] 已知∫
-∞
+∞
e
k∣x∣
dx=1,则k=_________.
选项
答案
由于所给反常积分收敛,可用命题1.3.4.1(1)求之. 解一 由题设知,反常积分∫
-∞
+∞
e
k∣x∣
dx收敛,而e
k∣x∣
为偶函数,由命题1.3.4.1得到 l=∫
-∞
+∞
e
k∣x∣
dx=2∫
0
+∞
e
kx
dx=一[*]∫
0
+∞
(-kx)
0
e
-(-kx)
d(-kx)=一[*],即k=一2. 解二 1=∫
-∞
+∞
e
kx
dx=2∫
0
+∞
e
kx
dx (利用命题1.3.4.1(1)) =2[*](e
kb
一1). 因极限存在,故k<0,因而[*]e
kb
=0,于是一2/k=1,即k=一2.
解析
转载请注明原文地址:https://kaotiyun.com/show/LJV4777K
0
考研数学二
相关试题推荐
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x,令P=(x,Ax,A2X)(1)求3阶矩阵B,使A=PBP-1;(2)求|A+E|的值.
设f(x)在[0,+∞)连续,=A≠0,证明:∫01f(nx)dx=A.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|一f(t)dt当x取何值时,F(x)取最小值;
行列式的第4行元素的余子式之和的值为_______.
在t=0时,两只桶内各装10L的盐水,盐的浓度为15g/L,用管子以2L/min的速度将净水输入到第一只桶内,搅拌均匀后的混合液又由管子以2L/min的速度被输送到第二只桶内,再将混合液搅拌均匀,然后用1L/min的速度输出.求在任意时刻t>0,从第二只桶
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件;
(2012年)曲线y=渐近线的条数为【】
[2009年]设求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
随机试题
Itwasasummerevening.Iwassittingbytheopenwindow,readinga【C1】________Suddenly,Iheardsomeonecrying,"Help!Help!
用于控制疟疾症状的最佳抗疟药是
最可能的诊断是假如CT检查发现患者为脑叶出血,血肿超过40ml,患者颅压增高症状明显加重,处于浅昏迷状态,应首选下列何项措施
A.左下6B.右上5C.右上1D.右上ⅣE.左上Ⅲ左上乳尖牙
患者,女,35岁。月经周期正常,惟月经量少、色红、质稠,经期鼻衄,量不多,色暗红,伴手足心热,潮热颧红,舌红少苔,脉细数。其证候是
资产组合M的期望收益率为18%,标准离差为27.9%;资产组合N的期望收益率为13%,标准离差率为1.2。投资者张某和赵某决定将其个人资金投资于资产组合M和N中,张某期望的最低收益率为16%,赵某投资于资产组合M和N的资金比例分别为30%和70%。
建设工程的屋面防水工程、有防水要求的卫生间、房间和外墙面的防渗漏,最低保修期限为()年。
8,17,24,37,()
《民法典》规定:“物权的种类和内容,由法律规定。”对此,下列说法中正确的是()
Thatshewas(i)_____rockclimbingdidnotdiminishher(ii)_____tojoinherfriendsonarock-climbingexpedition.
最新回复
(
0
)