首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,+∞)内可导,f’(x)<0且f(x)=a>0,令an=f(k)一∫1nf(x)dx.证明:{an}收敛且0≤an≤f(1).
设f(x)在[1,+∞)内可导,f’(x)<0且f(x)=a>0,令an=f(k)一∫1nf(x)dx.证明:{an}收敛且0≤an≤f(1).
admin
2017-08-31
43
问题
设f(x)在[1,+∞)内可导,f
’
(x)<0且
f(x)=a>0,令a
n
=
f(k)一∫
1
n
f(x)dx.证明:{a
n
}收敛且0≤
a
n
≤f(1).
选项
答案
因为f
’
(x)<0,所以f(x)单调减少. 又因为a
n+1
一a
n
=f(n+1)一∫
n
n+1
f(x)dx=f(n+1)一f(ξ)≤0(ξ∈[n,n+1]), 所以{a
n
}单调减少. 因为a
n
=[*]∫
k
k+1
[f(k)-f(x)]dx+f(n),而∫
k
k+1
[f(k)一f(x)]dx≥0(k=1,2,…,n一1) 且[*]=a>0,所以存在X>0,当x>X时,f(x)>0. 由f(x)单调递减得f(x)>0(x∈[1,+∞)),故a
n
≥f(n)>0,所以[*]存在. 由a
n
=f(1)+[f(2)一∫
1
2
f(x)dx]+…+[f(n)-∫
n-1
n
f(x)dx], 而f(k)-∫
k-1
k
f(x)dx≤0(k=2,3,…,n),所以a
n
≤f(1),从而0≤[*]≤f(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/LJr4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
(I)设[*5问a,b为何值时,β1,β2能同时由α1,α2,α3线性表出.若能表出时,写出其表出式;(Ⅱ)设问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
[*]
设n为自然数,证明:f(x)在[0,+∞)取最大值并求出最大值点;
设X,Y为两个随机变量,其中E(X)=2,E(Y)=一1,D(X)=9,D(Y)=16,且X,Y的相关系数为,由切比雪夫不等式得P{|X+Y一1|≤10}≥().
设f(x)在[0,1]上连续,在(0,1)内可导,且证明:(Ⅰ)存在c∈(0,1),使得f(c)=0;(Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ);(Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
设连续型随机变量X的分布函数F(x)严格递增,Y~U(0,1),则Z=F-1(Y)的分布函数().
设在x=0处二阶导数存在,则常数a,b分别是
判断级数的敛散性,若级数收敛,判断其是绝对收敛还是条件收敛.
求的最大项.
随机试题
奥运会的格言是“更快、更高、更强”。请结合这一格言,自拟题目。要求:A.自定立意,可写成记叙文、议论文。B.不少于800字。C.字迹工整,卷面整洁。
小儿腹泻脱水,在脱水纠正后出现抽搐,最常见的原因是
印制规范包括()要求。
根据《会计人员继续教育暂行规定》,具有初级会计专业技术资格的会计人员每年接受继续教育的培训时间最少应为()。
下列各项中,属于企业所有者权益组成部分的有()。
Whathealthproblemsdomanyelderlyhave?MaggieKuhntravelsacrosstheUnitedStatesinorderto______elders.
A、 B、 C、 D、 D
A、Yellow.B、Green.C、White.A本题询问丽莉的衣服是什么颜色的。女士说:TheblueoneisLucy’s,andtheyellowoneisLily’s.可知答案为[A]Yellow。
MESOLITHICCOMPLEXITYINSCANDINAVIA(1)TheEuropeanMesolithic(roughlytheperiodfrom8000B.C.to2700B.C.)testifiest
A、Hefounditmoreprofitable.B、Hewantedtobehisownboss.C、Hedidn’twanttostartfromscratch.D、Hedidn’twanttobein
最新回复
(
0
)