首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[1,+∞)内可导,f’(x)<0且f(x)=a>0,令an=f(k)一∫1nf(x)dx.证明:{an}收敛且0≤an≤f(1).
设f(x)在[1,+∞)内可导,f’(x)<0且f(x)=a>0,令an=f(k)一∫1nf(x)dx.证明:{an}收敛且0≤an≤f(1).
admin
2017-08-31
48
问题
设f(x)在[1,+∞)内可导,f
’
(x)<0且
f(x)=a>0,令a
n
=
f(k)一∫
1
n
f(x)dx.证明:{a
n
}收敛且0≤
a
n
≤f(1).
选项
答案
因为f
’
(x)<0,所以f(x)单调减少. 又因为a
n+1
一a
n
=f(n+1)一∫
n
n+1
f(x)dx=f(n+1)一f(ξ)≤0(ξ∈[n,n+1]), 所以{a
n
}单调减少. 因为a
n
=[*]∫
k
k+1
[f(k)-f(x)]dx+f(n),而∫
k
k+1
[f(k)一f(x)]dx≥0(k=1,2,…,n一1) 且[*]=a>0,所以存在X>0,当x>X时,f(x)>0. 由f(x)单调递减得f(x)>0(x∈[1,+∞)),故a
n
≥f(n)>0,所以[*]存在. 由a
n
=f(1)+[f(2)一∫
1
2
f(x)dx]+…+[f(n)-∫
n-1
n
f(x)dx], 而f(k)-∫
k-1
k
f(x)dx≤0(k=2,3,…,n),所以a
n
≤f(1),从而0≤[*]≤f(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/LJr4777K
0
考研数学一
相关试题推荐
下列结论正确的是().
设X,Y为两个随机变量,其中E(X)=2,E(Y)=一1,D(X)=9,D(Y)=16,且X,Y的相关系数为,由切比雪夫不等式得P{|X+Y一1|≤10}≥().
设(X,Y)的联合密度函数为(Ⅰ)求常数k;(Ⅱ)求X的边缘密度;(Ⅲ)求当X=x(0≤x≤)下Y的条件密度函数fY|X(y|x).
设un(x)满足un’(x)=un(x)+xn-1ex(n=1,2,…),且求级数的和函数.
设X1,X2,…,Xn是来自总体X的简单随机样本,且总体X的密度函数为(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的极大似然估计量.
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3(Ⅰ)证明:α,Aα,A2α线性无关;(Ⅱ)设P=(α,Aα,A2α),求P-1AP.
设光滑曲面∑所围闭域Ω上,P(x,y,z)、Q(x,y,z)、R(x,y,z)有二阶连续偏导数,且∑为Ω的外侧边界曲面,由高斯公式可知的值为__________.
飞机在机场开始滑行着陆,在着陆时刻已失去垂直速度,水平速度为v0(m/s),飞机与地面的摩擦系数为μ,且飞机运动时所受空气的阻力与速度的平方成正比,在水平方向的比例系数为kx(kg·s2/m2),在垂直方向的比例系数为ky(kg·s2/m2).设飞机的质量
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x)]必有间断点。②[φ(x)]2必有间断点。③f[φ(X)]没有间断点。
随机试题
属于非核苷类抗病毒药的是
苯酚储存保管有哪些要求?
某小型猪场,部分猪出现极度口渴、黏膜潮红、呕吐、兴奋不安、转圈、肌肉痉挛、全身震颤等症状,这些神经症状周期性发作。此外,病猪呈犬坐姿势,后期四肢瘫痪,昏迷不醒,有的衰竭而死。本病最可能是
某坝面碾压施工设计碾压遍数为5遍,碾滚净宽为4m,则错距宽度为()m。
国内生产总值在价值的构成上,是指一定时期内一国范围内所有常住单位的()总和。
如果把各项改革任务比作一个个盘子,那么领导干部就要学会“转盘子”,实现任务之间的________协调,才能同时转动多个盘子,下好改革一盘棋。填入画横线部分最恰当的一项是:
请联系实际,评述马克思主义教育学的基本观点。
ACAREERINRETAILINGKeepingthecustomersatisfiediscentraltotheretailbusiness.Buthowmuchjobsatisfactioncanworker
Fromwhatwehavediscussedabove,the(conclude)______wehavecometoisthatwemusttakeimmediatemeasurestocontrolthe
DoBritain’sEnergyFirmsServethePublicInterest?[A]Capitalismisthebestandworstofsystems.Lefttoitself,itwillemb
最新回复
(
0
)