首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 函数y=C1ex+C2e-2x+xex满足的一个微分方程是( ).
[2006年] 函数y=C1ex+C2e-2x+xex满足的一个微分方程是( ).
admin
2019-05-10
49
问题
[2006年] 函数y=C
1
e
x
+C
2
e
-2x
+xe
x
满足的一个微分方程是( ).
选项
A、y"-y′-2y=3xe
x
B、y"-y′-2y=3e
x
C、y"+y′-2y=3xe
x
D、y"+y′-2y=3e
x
答案
D
解析
由所给的通解看出特征根,构造出特征方程,写出对应的齐次微分方程.再由通解中的特解xe
x
确定非齐次方程中的自由项.
解一 由Y的结构形式易知,对应的齐次微分方程的特征方程有两个特征根r
1
=l,r
2
=一2,
因而特征方程为(r+2)(r一1)=r
2
+r-2=0,于是对应的齐次方程为y"+y′-2y=0,排除(A)、(B).由xe
x
为非齐次方程的特解,易求得非齐次项f(x)=3e
x
.因而仅(D)入选.
解二 先由y=C
1
e
x
+C
2
e
-2x
+xe
x
,求出y′及y":
y′=C
1
e
x
一2C
2
e
-2x
+(x+1)e
x
, y"=C
1
e
x
+4C
2
e
-2x
+(x+2)e
x
,
则 y"+y′=2C
1
e
x
+2C
2
e
-2x
+2(x+1)e
x
+e
x
=2(C
1
e
x
+C
2
e
-2x
+xe
x
)+3e
x
=2y+3e
x
,
即y"+y′一2y=3e
x
.仅(D)入选.
转载请注明原文地址:https://kaotiyun.com/show/LNV4777K
0
考研数学二
相关试题推荐
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
设D={(χ,y)|0≤χ≤1,0≤y≤1},直线l:χ+y=t(t≥0),S(t)为正方形区域D位于l左下方的面积,求∫0χS(t)dt(χ≥0).
设函数f(χ)在[0,2π]上连续可微,f′(χ)≥0,证明:对任意正整数n,有|∫02πf(χ)sinnχdχ|≤[f(2π)-f(0)].
n阶矩阵A满足A2-2A-3E=O,证明A能相似对用化.
已知二次型f=2χ12+3χ22+3χ32+2aχ2χ3(a>0),通过正交变换化成标准形f=y12+2y22+5y32.求参数a及所用的正交变换矩阵.
a,b取何值时,方程组有解?
设函数z=z(χ,y)由方程χ2+y2+z2=χyf(z2)所确定,其中厂是可微函数,计算并化成最简形式.
设f(χ)连续可导,f(0)=0,f′(0)≠0,F(χ)=∫0χ(χ2-t2)f(t)dt,且当χ→0时,F′(χ)与χk为同阶无穷小,求k.
微分方程xy’+y=0满足初始条件y(1)=2的特解为_____________.
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
随机试题
奇恒之腑中与肾密切相关的是
A.成牙组织的错构或发育畸形B.良性、单囊或多囊、发生于颌骨内的牙源性肿瘤C.肿瘤生长缓慢,可侵犯包膜,易复发D.有完整包膜.术后很少复发E.为良性肿瘤,呈局部浸润性生长牙瘤()
下面哪项不是窝沟封闭的适应证
下列意识障碍表现中,哪项与颅内血肿关系最为密切
新生儿出生后,Apgar评分的评价指标不包括
马克思认为,人的片面发展最为严重的时期是()
《唐律疏议.名例律》规定:“诸年70以上,15以下,及废疾,犯流罪以下,收赎(但犯加役流、反逆缘坐流、会赦犹流者,不用此律;至配所,免居作)。80以上,10岁以下,及笃疾,犯反、逆、杀人应死者,上请;盗及伤人者,亦收赎(有官爵者,各从官当、除、免法);余皆
结合材料回答问题:“在殿堂和田垄之间,你选择后者。脚踏泥泞,俯首躬行,在荆棘和贫穷中拓荒,洒下的汗水是青春,埋下的种子叫理想。守在悉心耕耘的大地,静待收获的时节。”这是《感动中国2016年度人物》写给秦玥飞的颁奖词。26岁,秦玥飞从耶鲁毕业后,来到湖南
在Windows操作系统中,回收站可以恢复(1)上使用<Del>键删除文件或文件夹。在“我的电脑”窗口中,如果要整理磁盘上的碎片,应选择磁盘“属性”对话框(2)选项卡。使用资源管理器时,(3),不能删除文件或文件夹。
—Lookatthenotesbelow.—Youwillhearawomantelephoningaboutarecruitmentdrive.—staffneededduetogrowthin【9】__
最新回复
(
0
)