首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A和B都是n阶矩阵.给出下列条件 ①A是数量矩阵. ②A和B都可逆. ③(A+B)2=A2+2AB+B2. ④AB=cE. ⑤(AB)2=A2B2. 则其中可推出AB=BA的有( )
A和B都是n阶矩阵.给出下列条件 ①A是数量矩阵. ②A和B都可逆. ③(A+B)2=A2+2AB+B2. ④AB=cE. ⑤(AB)2=A2B2. 则其中可推出AB=BA的有( )
admin
2016-10-21
35
问题
A和B都是n阶矩阵.给出下列条件
①A是数量矩阵.
②A和B都可逆.
③(A+B)
2
=A
2
+2AB+B
2
.
④AB=cE.
⑤(AB)
2
=A
2
B
2
.
则其中可推出AB=BA的有( )
选项
A、①②③④⑤.
B、①③⑤.
C、①③④.
D、①③.
答案
D
解析
①和③的成立是明星的,②是不对的.
④AB=cE,在c≠0时可推出AB=BA,但是c=0时则推不出AB=BA.
如
⑤(AB)
2
=A
2
B
2
推不出AB=BA.对于④中的A和B,(AB)
2
和A
2
B
2
都是零矩阵,但是AB≠BA.
转载请注明原文地址:https://kaotiyun.com/show/LPt4777K
0
考研数学二
相关试题推荐
[*]
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加,证明:f(x)在[0,1]上连续.
设f(x)在[a,b]上可导,且f’(x)≤M,f(a)=0,证明:∫abf(x)dx≤(b-a)2
对于一切实数t,函数f(t)连续的正函数且可导,同时有f(-t)=f(t),又函数g(x)=∫-aa|x-t|f(t)dt,a>0,x∈[-a,a]求出使g(x)取最小值的x值。
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xf’(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时,图形S绕x轴旋转一周所得的旋转体的体积最小。
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别为p1=18-2Q1p2=12-Q2其中p1,p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求;量,单位:吨)并且该企业生产
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数,求φ"(y).
设有连结点O(0,0)和A(1,1)的一段凸的曲线弧,对于上任一点P(x,y),曲线弧与直线段所围图形的面积为x2,求曲线弧的方程。
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
设向量组α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.p为何值时,该向量组线性无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出.
随机试题
_______是解决上下级行政组织冲突的常见方式。
胆道感染可选用:
先天性甲状腺功能减低症新生儿筛查是检测血
广东省广州市两家知名零售药店,深受患者好评。近日有人发现,甲药店客流量明显高于乙药店的客流量。深入了解发现,附近的患者都听说乙药店的药品质量不好,有些甚至是过期的。最终调查发现,是甲药店为了增加客流量而传出来的流言,目的是为了增加客流量。此外,甲药店销售人
某上市公司2011年度的财务报告于2012年4月30日批准报出,2012年3月15日。该公司发现了2010年度的—项重大会计差错。该公司正确的做法是()。
据“国内个人捐款抽样问卷调查”表明:受过良好教育的人构成了个人捐款者群体的主体。其中大专以上占30.1%,本科以上占31.1%。每一万个大专以上学历的人中,有64.6人为希望工程捐过款,而每一万个小学以下学历的人,捐款不足0.05人。在接受调查的3158名
综合地说,社区具有以下哪些特征?( )
目前在火电领域诞生的新技术很多,联合循环技术就是其中之一。简单来说,联合循环技术就是“一气两用”:将燃气轮机排出的高温废气,通过余热锅炉回收转换为蒸汽,进入蒸汽轮机后驱动其运转,两台轮机都将动能输送至发电机进行发电;废气再次进入锅炉,进一步将其中蕴含的热能
Iclosemyeyesandcanstillhearher—thelittlegirlwitha【C1】______sostrongandpowerfulwecouldhearherhalfwaydownthe
Embracingglobalisation,Shanghaihasbecomeoneofthemost_______citiesintheworld.
最新回复
(
0
)