首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,α3线性无关,则下列向量组线性相关的是( )
设向量组α1,α2,…,α3线性无关,则下列向量组线性相关的是( )
admin
2018-01-26
69
问题
设向量组α
1
,α
2
,…,α
3
线性无关,则下列向量组线性相关的是( )
选项
A、α
1
-α
2
,α
2
-α
3
,α
3
,α
1
。
B、α
1
+α
2
,α
2
+α
3
,α
3
+α
1
。
C、α
1
-2α
2
,α
2
-2α
3
,α
3
-2α
1
。
D、α
1
+2α
2
,α
2
+2α
3
,α
3
+2α
1
。
答案
A
解析
用向量组线性相关的定义进行判定。令
x
1
(α
1
-α
2
)+x
2
(α
2
-α
3
)+x
3
(α
3
-α
1
)=0,
得 (x
1
-x
3
)α
1
+(-x
1
+x
2
)α
2
+(-x
2
+x
3
)α
3
=O。
因α
1
,α
2
,α
3
线性无关,所以
因上述方程组系数矩阵的行列式
=0,故上述齐次线性方程组有非零解,即
α
1
-α
2
,α
2
-α
3
,α
3
-α
1
线性相关。
同理可判断(B)、(C)、(D)中的向量组都是线性无关的。
转载请注明原文地址:https://kaotiyun.com/show/Lcr4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,.证明:存在c∈(a,b),使得f(c)=0;
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,=1,f(1)=0.证明:(1)存在,使得f(η)=η;(2)对任意的k∈(一∞,+∞),存在ξ∈(0,η),使得f’(ξ)一k[f(ξ)一ξ]=1.
假设有四张同样的卡片,其中三张上分别只印有a1,a2,a3,而另一张上同时印有α1,α2,α3.现在随意抽取一张卡片,令Ak={卡片上印有ak)。证明:事件A1,A2,A3两两独立但不相互独立.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.求矩阵ABT的秩r(ABT);
n维向量组a1,a2…,as(3≤s≤n)线性无关的充要条件是()
级数当________时绝对收敛;当________时条件收敛;当________时发散.
设A=E+αβT,其中α=[a1,a2……an]T≠0,β=[b1,b2……bn]T=0,且αTβ=2.求A的特征值和特征向量;
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1-α2,α1-2α2+α3,(α1一α3),α1+3α2-4α3,是导出组Ax=0的解向量的个数为()
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f′(0)=0,且-1)f″(x)-xf′(x)=ex-1,则下列说法正确的是
对于随机变量X1,X2,…,Xn,下列说法不正确的是().
随机试题
我国封建时代设“三监”作为官府手工业管理机构,其主要特点是()
Manyoftheworld’spollutionproblemshavebeencausedbythecrowdingoflargegroupsofpeopleintothecities.Supplyforth
引起腹壁切口疝的主要原因是
图B2—11所示轻钢龙骨石膏板隔墙,其空气声隔声值为:[2000--092]
监理单位在竞争承揽监理业务时应注意的事项有( )。
下列政府财政支出中属于转移支付的项目是()。
上海证券交易所对B股(人民币特种股票)实行T+3交收方式的程序中,()日,证券登记结算公司根据证券交易所提供的B股当日成交资料编制各结算会员的清算交收表。
假设AC、AVC和MC分别表示平均总成本、平均可变成本和边际成本,则完全竞争市场的短期供给曲线为()。
2007年全球金融海啸肆虐,以家电为代表的消费性电子产品外销的需求急速衰退,家电企业可谓________。为了扩大国内市场,也为了让国内家电企业走出低谷,家电下乡、以旧换新、节能补贴等政策陆续出台。这些扶持性政策________,对家电业发展产生了巨大的推
新民主主义的经济纲领是:没收封建地主阶级的土地归农民所有,没收官僚资产阶级的垄断资本归新民主主义的国家所有,保护民族工商业。其中,新民主主义革命的主要内容是
最新回复
(
0
)