首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3,α4,求线性方程组AX=β的通解.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3,α4,求线性方程组AX=β的通解.
admin
2016-07-22
75
问题
已知4阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
-α
3
,如果β=α
1
+α
2
+α
3
,α
4
,求线性方程组AX=β的通解.
选项
答案
方法一 由α
1
=2α
2
-α
3
及α
2
,α
3
,α
4
线性无关知r(A)=r(α
1
,α
2
,α
3
,α
4
)=3.且对应齐次方程组AX=0有通解k[1,-2,1,0]
T
,又β=α
1
+α
2
+α
3
+α
4
,即 [α
1
,α
2
,α
3
,α
4
]X=β=α
1
+α
2
+α
3
+α
4
=[α
1
,α
2
,α
3
,α
4
][*] 故非齐次方程组有特解η=[1,1,l,1]
T
,故方程组的通解为k[1,-2,1,0]
T
+[1,1,1,1]
T
. 方法二 [α
1
,α
2
,α
3
,α
4
]X=β=α
1
+α
2
+α
3
+α
4
=[α
1
,α
2
,α
3
,α
4
][*] =(2α
2
-α
3
)+α
2
+α
3
+α
4
=3α
2
+α
4
=[α
1
,α
2
,α
3
,α
4
][*] 故方程组有两特解η
1
=[1,1,1,1]
T
,η
2
=[0,3,0,1]
T
. 对r(A)=3,故方程组的通解为 K(η
1
-η
2
)+η
1
=k[1,-2,1,0]
T
+[1,1,1,1]
T
. 方法三 由AX=[α
1
,α
2
,α
3
,α
4
]X=β=α
1
+α
2
+α
3
+α
4
,得 x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
+α
2
+α
3
+α
4
将α
1
=2α
2
-α
3
代人,整理得 (2x
1
+x
2
-3)α
2
+(-x
1
+x
3
)α
3
+(x
4
-1)α
4
=0, α
2
,α
3
,α
4
线性无关,得 [*] 解方程组,得 [*],其中k是任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Lcw4777K
0
考研数学一
相关试题推荐
设A=可逆,a=(1,b,1)T(b>0)满足A*a=λa,A*是A的伴随矩阵求正较变换x=Qy化二次型f(x1,x2,x3)=xTAx为标准形
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B求正交矩阵Q
设f(x)在[-a,a]上连续,在(-a,a)内可导,且f(-a)=f(a)(a>0),证明:存在ξ∈(-a,a),使得f’(ξ)=2ξf(ξ).
设un≥0,n=1,2,…,对于级数(-1)n-1un下列结论正确的是().
有一单位球,球内各点处到该球外一定点(0,0,a),(a>1)的距离成反比,求此球的质心.
设L为取正向的圆周x2+y2=1,则∮L(ey+2y)dx-(cosy-xey)dy=________.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中恰有一件是废品”;
一实习生用同一台机器接连独立地制造3个同种零件,第i个零件是不合格品的概率Pi=1/(i+1)(i=1,2,3),以X表示3个零件中合格品的个数,则P{X=2}=___________.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
随机试题
办事公道是指从业人员在进行职业活动时要做到助人为乐,有求必应。()
A、5个高倍视野B、10个高倍视野C、15个低倍视野D、20个低倍视野E、全片尿沉渣镜检细胞至少观察
根据(),热网可分为蒸汽管网、热水管网和混合式管网三种
马路上的红绿灯从上到下排列顺序是黄、红、绿。()
什么是管理?管理有哪些基本职能?
根据所给材料,回答下列问题。组建文化和旅游部,是新一轮国务院机构改革的重头戏之一。不过,新部门尚未正式“揭开_______”,朋友圈里的一张图片倒是为这个部门_______了一把,看着照片里的“文化和旅游部”,很多网友_______:“诗和远方终
Enormoussumsofmoneyhavebeenspentonspaceexploration.
A、 B、 C、 D、 A应确定图片中没有人,同时注意房间内事物的状态和位置。
【B1】【B3】
Refrigeration,railways,suburbangrowthandthecarhavegivenrisetothesupermarket,withitsshrink-wrappedfood,sell-byd
最新回复
(
0
)