首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,若齐次方程组AX=0的任一非零解均可用a线性表示,则a=( ).
设A=,若齐次方程组AX=0的任一非零解均可用a线性表示,则a=( ).
admin
2022-06-30
77
问题
设A=
,若齐次方程组AX=0的任一非零解均可用a线性表示,则a=( ).
选项
A、3
B、5
C、3或-5
D、5或-3
答案
C
解析
因为AX=0的任一非零解都可由a线性表示,所以AX=0的基础解系只含一个线性无关的解向量,从而r(A)=2.
由A=
得
a-5=-2或a+5=0,解得a=3或-5,应选C.
转载请注明原文地址:https://kaotiyun.com/show/d2f4777K
0
考研数学二
相关试题推荐
设f(x)=x2(x一1)(x一2),则f’(x)的零点个数为()
设y1(x)、y2(x)为二阶变系数齐次线性方程y’’+P(x)y’+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
考虑二元函数的下面4条性质:①f(χ,y)在点(χ0,y0)处连续;②f(χ,y)在点(χ0,y0)处的两个偏导数连续;③f(χ,y)在点(χ0,y0)处可微;④f(χ,y)在点(χ0,y0)处两个偏导数存在
设u=f(χ+y,χz)有二阶连续的偏导数,则=().
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f"((x)在(a,+∞)内存在且大于零,则F(x
设A是m×n矩阵,且m>n,下列命题正确的是().
设3阶矩阵A与B相似,且|3E+2A|=0,|3E+B|=|E—2B|=0,则行列式|A|的代数余子式A11+A22+A33=________。
设y=f(x)是第一象限内连接点A(0,1),B(1,0)的一段连续曲线,M(x,y)为该曲线上任意一点,点C为M在x轴上的投影,O为坐标原点。若梯形OCMA的面积与曲边三角形CBM的面积之和为,求f(x)的表达式。
多项式f(x)=中x3项的系数为________.
一长方形的两边长分别以x与y表示,若x边以0.O1m/s的速度减少,y边以0.02m/s的速度增加,求在x=20m,y=15m时,长方形面积的变化速度及对角线长度的变化速度.
随机试题
正常使用中的开关箱必须合上电源后箱门上锁。()
垂直下落,骤然下落vi.p______
乳腺癌以淋巴道转移最常见,首先受累的常为
当施工中或验收时出现下列情况,可采用现场检验方法对砂浆或砌体强度进行检测,并判定其强度:()
当声能衰减到原值的()所需的时间,称为混响时间。
商品化会计核算软件开发经销单位在售出软件后应承担售后服务工作,在下列工作中,()不是软件开发销售商必须提供的。
长期借款由于借款期限长,风险大,因此借款成本也较高。()
提出“太阳中心说”的是()
要详尽地了解社会现象,探索规律,即使是地区性的,也一定要走进现实社会中找资料,绝不能凭空臆断。要明白事情的因果关系,建立有关的理论,不能没有以供验证理论之用的实质的资料。所以,( )。
下列选项中,属于应当附加剥夺政治权利的是()
最新回复
(
0
)