首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,…,αm(m>1)线性无关,且β=α1+α2+…+αm,证明:β-α1,β-α2,…,β-αm线性无关.
设向量组α1,α2,…,αm(m>1)线性无关,且β=α1+α2+…+αm,证明:β-α1,β-α2,…,β-αm线性无关.
admin
2021-02-25
42
问题
设向量组α
1
,α
2
,…,α
m
(m>1)线性无关,且β=α
1
+α
2
+…+α
m
,证明:β-α
1
,β-α
2
,…,β-α
m
线性无关.
选项
答案
设有数组λ
1
,λ
2
,…,λ
m
,使 λ
1
(β-α
1
)+λ
2
(β-α
2
)+…+λ
m
(β-α
m
)=0, 即 (λ
2
+λ
3
+…+λ
m
)α
1
+(λ
1
+λ
3
+…+λ
m
)α
m
+…+(λ
1
+λ
2
+…+λ
m-1
)α
m
=0, 由于α
1
,α
2
,…,α
m
线性无关,所以有 [*] 由于方程组的系数行列式 [*] 所以方程组只有零解,即λ
1
=λ
2
=…=λ
m
=0,故β-α
1
,β-α
2
,…,β-α
m
线性无关.
解析
本题考查向量组线性相关性的概念及判定.
转载请注明原文地址:https://kaotiyun.com/show/Li84777K
0
考研数学二
相关试题推荐
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
设A,b都是n阶矩阵,使得A+B可逆,证明B(A+B)-1A=A(A+B)-1B.
设χy=χf(χ)+yg(z),且χf′(z)+yg′(z)≠0,其中z=z(χ,y)是z,y的函数.证明:[z-g(z)]=[y-f(z)].
设f(χ)在[0,π]上连续,在(0,π)内可导,证明:至少存在一点ξ∈(0,π),使得f′(ξ)=-f(ξ)cotξ.
设函数,数列{xn}满足lnxn+<1。证明xn存在,并求此极限。[img][/img]
证明
设自动生产线加工的某种零件的内径X(单位:mm)服从正态分布N(μ,1),内径小于10mm或大于12mm为不合格品,其余为合格品.销售合格品获利,销售不合格品亏损,已知一个零件的销售利润T元与X有如下关系:T=,问平均内径μ取何值时,销售一个零件的平均获利
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。将β1,β2,β3由α1,α2,α3线性表示。
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
随机试题
背景:北方某房屋建筑工程,地上20层,地下2层,建筑面积22000m2。桩基础,冻土层厚800mm,地上剪力墙结构。质量目标:合格。工期450日历天。施工单位中标后成立了项目部,并于2009年11月15日进场。施工过程中发生了如下事件:事件一:项目部编
无论是西文字符还是中文字符,在计算机一律用()编码来表示。
最易发生肋骨骨折的是
积液一级检查内容包括()
车间管理人员的工资不属于直接工资,因而不能计入产品成本,而应计入期间费用。()
从纵向看,我国教育制度结构包括()。(2016.广西)
一件产品要经过三道工序,每道工序的合格率分别为99.98%,99.95%,99.93%。该产品的合格率是多少?()
某单位有甲、乙两个部门,若从甲部门调动7个人到乙部门,则乙部门的人数比甲部门的人数多2倍,若从乙部门调动5个人到甲部门,则甲、乙两部门人数相等,问甲部门有多少人?()
设若Ax=0的基础解系由2个线性无关的解向量构成,
某计算机系统输入/输出采用双缓冲工作方式,其工作过程如下图所示,假设磁盘块与缓冲区大小相同,每个盘块读入缓冲区的时间T为10μs,缓冲区送用户区的时间M为6μs,系统对每个磁盘块数据的处理时间C为2μs。若用户需要将大小为10个磁盘块的:Doc1文件逐块从
最新回复
(
0
)