首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则 【 】
(2005年)设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则 【 】
admin
2021-01-19
88
问题
(2005年)设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A
*
,B
*
分别为A,B的伴随矩阵,则 【 】
选项
A、交换A
*
的第1列与第2列得B
*
.
B、交换A
*
的第1行与第2行得B
*
.
C、交换A
*
的第1列与第2列得-B
*
.
D、交换A
*
的第1行与第2行得-B
*
.
答案
C
解析
用排除法.以2阶方阵为例,设
由此可见,交换A
*
的第1列与第2列得-B
*
,而其它选项均不对,故只有C正确.
转载请注明原文地址:https://kaotiyun.com/show/Lj84777K
0
考研数学二
相关试题推荐
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。根据t时刻液面
求微分方程y〞+2y′-3y=(2χ+1)eχ的通解.
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0。证明:当x≥0时,成立不等式e-x≤f(x)≤1。
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0。求导数f’(x);
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
方程yy〞=1+yˊ2满足初始条件y(0)=1,yˊ(0)=0的通解为_______.
(2005年)已知函数f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1.
设f(x)=2x+3x一2,则当x→0时()
(1997年试题,四)λ取何值时,方程组无解?有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
随机试题
王女士,有糖尿病史,今日发现外阴瘙痒,阴道有大量白色稠厚、豆渣样白带,最可能的疾病是
患儿男,8岁,右下第一恒磨牙深龋,去除大块腐质,近髓处留少许软化牙本质,上方用氢氧化钙盖髓后充填。下次复诊进行二次去腐质的时间是
以下情况中,保证人可能承担保证责任的是()
2008年上半年,中国人民银行先后5次上调金融机构人民币存款准备金率,由14.5%调整到了17.5%。下半年以后,随着国际金融动荡加剧,为保证银行体系流动性充分供应,中国人民银行分别于9月25日、10月15日、12月5日和12月25日4次下调金融机构人民币
下列事实或情况可以判断属于共同经营的有()。
运算、写作等技能属于()
2,1,4,3,(),5
阅读下面的短文,回答问题。新年伊始,巴西总统卢拉召开了专题内阁会议,讨论如何保护亚马孙热带雨林。据巴西环境部统计,2007年亚马孙热带雨林遭到了严重破坏,仅8月至12月短短的5个月里,就被毁掉70平方公里,相当于4个巴西特大城市圣保罗的
Thegreatchangesofthecityastonishedeveryvisitortothatcity.
Scatteredaroundtheglobearemorethan100smallregionsofisolatedvolcanicactivityknowntogeologistsashotspots.Unlik
最新回复
(
0
)