首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0。 求导数f’(x);
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0。 求导数f’(x);
admin
2019-06-28
68
问题
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f
’
(x)+f(x)一
∫
0
x
f(t)dt=0。
求导数f
’
(x);
选项
答案
由题设知 (x+1)f
’
(x)+(x+1)f(x)一∫
0
x
f(t)dt=0。 上式两边对x求导,得 (x+1)f
’’
(x)=一(x+2)f
’
(x), 即有[*]。 两边积分,得 ln|f
’
(x)|=一x一ln(x+1)+C
1
, 所以 f
’
(x)=[*]。 在题设等式中令x=0,得f
’
(0)+f(0)=0。又已知f(0)=1,于是f
’
(0)=一1,代入f
’
(x)的表达式,得C=一1,故有 f
’
(x)=[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/5dV4777K
0
考研数学二
相关试题推荐
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT。求A2;
I(χ)=在区间[-1,1]上的最大值为_______.
若函数z=2x2+2y2+3xy+ax+by+c在点(一2,3)处取得极小值一3,则常数a、b、c之积abc=___________.
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵,使得QTAQ=。
-1/6方法一:本题为0/0未定型极限的求解,利用洛必达法则即可。方法二:泰勒公式。
求极限(sint/sinx)x/(sint-sinx),记此极限为f(x),求函数f(x)的间断点并指出其类型。
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1/2,0)。(Ⅰ)试求曲线L的方程;(Ⅱ)求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形面积最小。
已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2-(2-y)lny,求曲线f(x,y)=0所围成的图形绕直线y=-1旋转所成旋转体的体积。
设D是由曲线y=x1/3,直线x=a(a>0)及x轴所围成的平面图形。Vx,Vy分别是D绕x轴,y轴旋转一周所得旋转体的体积。若Vy=10Vx,求a的值。
随机试题
A、Nappingfor2hoursisbetterthanfor40minutes.B、Itdoesnotreviveyouifthenaplaststoolong.C、Youshouldnevertake
关于VPN的描述不正确的是()
“虚”的含义最宜是
以下哪一项对巨细胞病毒(CMV)感染的描述是错误的:
下列关于白酒最低计税价格核定的表述中,不正确的是()。
南方公司系生产电子仪器的上市公司,由管理总部和甲、乙两个车间组成。该电子仪器主要销往欧美等国,由于受国际金融危机的不利影响,电子仪器市场销量一路下滑。南方公司在编制2009年度财务报告时,对管理总部、甲车间、乙车间和商誉等进行减值测试。南方公司有关资产减值
下列调查中,最适合采用重点调查的是()。
银行信用逐步取代商业信用,并使后者规模日益缩小。(2016北京交通大学真题)
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则∫01y(z)dx=______.
1979年G1enfordMyers出版的《theArtofSoftwareTesting》一书除了介绍众多的测试经典方法之外,还向人们揭示了测试的目的是______。A)证真,而非证伪B)证伪,而非证真C)证真,且证伪D)验证程
最新回复
(
0
)