首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=,α1,α2,α3为线性无关的三维列向量组。则向量组Aα1,Aα2,Aα3.的秩为_________.
设矩阵A=,α1,α2,α3为线性无关的三维列向量组。则向量组Aα1,Aα2,Aα3.的秩为_________.
admin
2018-07-31
58
问题
设矩阵A=
,α
1
,α
2
,α
3
为线性无关的三维列向量组。则向量组Aα
1
,Aα
2
,Aα
3
.的秩为_________.
选项
答案
2
解析
由矩阵A的初等行变换
知矩阵A的秩为2.由α
1
,α
2
,α
3
线性无关矩阵[α
1
α
2
α
3
]为满秩方阵.
由矩阵乘法,有[Aα
1
Aα
2
Aα
3
]=A[α
1
α
2
α
3
],
由于用满秩方阵乘矩阵后矩阵的秩不改变.所以矩阵[Aα
1
Aα
2
Aα
3
]的秩等于矩阵A的秩,等于2,即向量组Aα
1
,Aα
2
,Aα
3
的秩为2.
转载请注明原文地址:https://kaotiyun.com/show/M5g4777K
0
考研数学一
相关试题推荐
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设f’(x)在[0,1]上连续且|f’(x)|≤M.证明:
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22—2y32,且A*+2E的非零特征值对应的特征向量为α=,求此二次型.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设a是n维单位列向量,A=E一ααT.证明:r(A)<n.
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=___________.
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
随机试题
下列属于主物和从物关系的是()
患者,女,45岁,近2年来反复出现多发口腔溃疡,两个月前劳累后出现左膝关节肿痛,双下肢皮肤结节红斑伴疼痛,一周前突发右眼视物不清,化验ESR增快,ANA阴性,最可能的诊断是
应用最多的立柱式X线管支架是
深立井井筒施工时,为了增大通风系统的风压,提高通风效果,合理的通风方式是()。
下列不属于企业投资性房地产的是()。
具有发行的银行、政府的银行、银行的银行三大职能的银行是()。
设A.B是n阶矩阵,E—AB可逆,证明E—BA可逆.
不同AS之间使用的路由协议是()。
SaveEnergyatHomeOntheaverage,Americanswasteasmuchenergyastwo-thirdsoftheworld’spopulationconsumes.That’s(1)
Whatwillthemanmostprobablydo?
最新回复
(
0
)