首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知以2π为周期的周期函数f(x)在(一∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明:x0∈使得F’’(x0)=0.
已知以2π为周期的周期函数f(x)在(一∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)2f(x),证明:x0∈使得F’’(x0)=0.
admin
2017-08-18
94
问题
已知以2π为周期的周期函数f(x)在(一∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx-1)
2
f(x),证明:
x
0
∈
使得F’’(x
0
)=0.
选项
答案
显然F(0)=F[*]=0,于是由罗尔定理知,[*]x
1
∈(0,[*]),使得F’(x
1
)=0.又 F’(x)=2(sinx一1)f(x)+(sinx一1)
2
f’(x), [*] 对F’(x)应用罗尔定理,由于F(x)二阶可导,则存在x
0
*
∈[*],使得F’’(x
0
*
)=0. 注意到F(x)以2π为周期,F’(x)与F’’(x)均为以2π为周期的周期函数,于是[*]x
0
=2π+x
0
*
,即 x
0
∈(2π,[*]),使得 F’’(x
0
)=F’’(x
0
*
)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/M6r4777K
0
考研数学一
相关试题推荐
没A是n阶反对称矩阵,举一个4阶不可逆的反对称矩阵的例子;
已知二次曲面X2+4y2+3z2+2axy+2xz+2(a一2)yz=1是椭球面,则a的取值为____________.
设a1,a2,a3均为3维向量,则对任意常数k,ι,向量组a1+ka3,a2+ιa3。线性无关是向量组a1,a2,a3线性无关的
设D是由曲线y=x3与直线所围成的有界闭区域,则()
设A,B是n阶矩阵.设求所有的B,使得AB=A.
设总体X的概率密度为其中θ,φ(0<θ,φ<1)是未知参数,X1,X2,…,Xn,是取自总体X的简单随机样本,记N为样本值x1,x2,…,xn中小于1的个数,求θ,φ的最大似然估计.
已知ξ1,ξ2,…,ξr(r≥3)是Ax=0的基础解系.则下列向量组也是Ax=0的基础解系的是()
设当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为其中P=(e1,e2,e3),若Q=(e1,一e3,e2),在正交变换x=Qy下的标准形为
随机试题
正常心脏后前位不易观察到的是
右下腹疼痛拒按,或右足屈而不伸,伸则痛甚,甚则局部肿痞,或时时发热,自汗恶寒,舌苔薄腻而黄,脉滑数。方剂选用
气雾剂的优点有()。
《建设工程安全生产管理条例》制定的基本法律依据包括()。
若企业不打算享受现金折扣优惠,则应尽量推迟付款的时间。()
如果会计师事务所非审计项目组成员的主要近亲属,通过继承从审计客户获得直接经济利益,则()。
《与朱元思书》是八年级下册第五单元的一篇课文,如果让你给八年级的学生执教这篇课文,你会怎么做呢?请按要求完成后面的题目:附:《与朱元思书》课文与朱元思书①
缺陷补偿,是指个体在充当社会角色时不可能事事成功,当自我角色目标失败时,常常可能会对相关的社会角色的重要性做重新评价,从而进行自我定义以补偿自己角色缺陷。根据上述定义,下列属于缺陷补偿的是()。
求|cos(x+y)|dxdy,其中D={(x,y)|
A、Assoonasshestarteduniversity.B、Aftershedidsomeresearch.C、Aftershetookaliteraturecourse.D、Whenshemetagood
最新回复
(
0
)