首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A,B等价,则下列说法中,不一定成立的是 ( )
设n阶矩阵A,B等价,则下列说法中,不一定成立的是 ( )
admin
2016-06-25
80
问题
设n阶矩阵A,B等价,则下列说法中,不一定成立的是 ( )
选项
A、|A|>0,则|B|>0
B、如果A可逆,则存在可逆矩阵P,使得PB=E
C、如果A≌E,则|B|≠0
D、存在可逆矩阵P与Q,使得PAQ=B
答案
A
解析
两矩阵等价的充要条件是秩相同.
当A可逆时,有r(A)=n,因此有r(B)=n,也即B是可逆的,故B
一1
B=E,可见(B)中命题成立.A≌E的充要条件也是r(A)=n,此时也有r(B)=n,故|B|≠0,可见(C)中命题也是成立的.
矩阵A,B等价的充要条件是存在可逆矩阵P与Q,使得PAQ=B,可知(D)中命题也是成立的.
故唯一可能不成立的是(A)中的命题.事实上,当|A|>0时,我们也只能得到r(B)=n,也即|B|≠0,不一定有|B|>0.故选(A).
转载请注明原文地址:https://kaotiyun.com/show/MBt4777K
0
考研数学二
相关试题推荐
设S(x)=∫0x|cost|dt.(1)证明:当nπ≤x<(n+1)π时,2n≤S(x)<2(n+1);(2)求
设f(x,y)=(1)f(x,y)在点(0,0)处是否连续?(2)f(x,y)在点(0,0)处是否可微?
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
设f(x)在[a,b]上连续,在(a,b)内可导,且f′+(a)f′-(b)<0.证明:存在ξ∈(a,b),使得f′(ξ)=0.
设f(x)在[a,b]上二阶可导,且f″(x)>0,取xi∈[a,b](i=1,2,…,n)及k1>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+kn(xn).
求曲线x3-3xy+y3=3上纵坐标最大和最小的点.
求极限,记此极限为f(x),求函数f(x)的间断点并指出其类型。
下列说法正确的是().
设数列{xn}满足0<x1<π,xn+1=sinxn(n=1,2,…)
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
随机试题
国防建设的基本依托是()
患者,男,66岁,因胸骨后疼痛2d,出冷汗,皮肤凉1h来院就诊。测BP10.6/6.6kPa(80/50mmHg)。ECG示V1-6,I、aVL导联的ST段明显抬高,并有深而宽的Q波。血清CK-MB峰高出正常的12倍。对该患者最有效的治疗是
申请人自发明或者实用新型在外国第一次提出专利申请之日起______,或者自外观设计在外国第一次提出专利申请之日起______,又在中国就相同主题提出专利申请的,依照该外国同中国签订的协议或者共同参加的国际条约,或者依照相互承认优先权的原则,可以享有优先权
MnO2+HCl=MnCl2+Cl2+H2O将反应配平后,MnCl2的系数为()。
根据《金融机构协助查询、冻结、扣划工作管理规定》,办理协助冻结业务时,金融机构经办人员应当核实的证件和法律文书不包括()。
设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在点(-1,f(-1))处的切线的斜率为__________.
1938年5、6月间,毛泽东发表《论持久战》的讲演,指出抗日战争是持久的,最后的胜利是中国的,全部问题的根据是()
下面是关于计算机病毒的4条叙述,其中正确的一条是______。
Whichofthefollowingcanbeusedasastativeverb(静态动词)?
TheAncientGreekOlympicsToday’sOlympicGamesarebasedonwhattookplaceatOlympia,inGreece,nearlythreemillennia
最新回复
(
0
)