首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年试题,十三)已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,一1,α)T,β=(3,10,6,4)T,问: (1)a,b取何值时,β不能由α1,α2,α3线性表示? (2)a,b取何值时,β可由α1,α2,α3线性表
(1998年试题,十三)已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,一1,α)T,β=(3,10,6,4)T,问: (1)a,b取何值时,β不能由α1,α2,α3线性表示? (2)a,b取何值时,β可由α1,α2,α3线性表
admin
2019-08-01
76
问题
(1998年试题,十三)已知α
1
=(1,4,0,2)
T
,α
2
=(2,7,1,3)
T
,α
3
=(0,1,一1,α)
T
,β=(3,10,6,4)
T
,问:
(1)a,b取何值时,β不能由α
1
,α
2
,α
3
线性表示?
(2)a,b取何值时,β可由α
1
,α
2
,α
3
线性表示?并写出此表示式.
选项
答案
向量β能否由α
1
,α
2
,α
3
线性表示实质上等价于下述方程组有解或无解的问题:Ax=β,其中[*]从而[*],相应的增广矩阵为[*]利用初等行变换将B化为阶梯形如下,[*]当b≠2时,rA
1,α
2
,α
3
线性表示;当b=2,a≠1时,rA=rB且rA=3,此时方程组Ax=β有唯一解,且相应的行简化阶梯形为[*]因此该唯一解为[*]因此β可由α
1
,α
2
,α
3
唯一表示为β=一α
1
+2α
2
;当b=2,a=1时,rA=rB且rA=2<3,此时方程组Ax=β有无穷解,相应的行简化阶梯形为[*]其导出组的基础解系为(一3,3,1)
T
,原方程组特解为(一1,2,0)
T
,则通解为C(一3,3,1)
T
+(一1,2,0)
T
其中C为任意常数,此时β可α
1
,α
2
,α
3
表示为β=一(3C+1)α
1
+(3C+2)α
2
+Cα
3
解析
一向量是否可由一组两量线性表示与对应的线性方程组是否有解是等同的,若对应的线性方程组无解,则不能线性表示;若对应的线性方程组有唯一解;则可以线性表示,并且表示方法唯一;若对应的线性方程组有无穷多组解,则可以线性表示,并且有无穷多种表示方法.在对线性方程组求解化为阶梯形的过程中,只能用行变换,在化为阶梯形后,对参数a,b讨论时要做到不重不漏.
转载请注明原文地址:https://kaotiyun.com/show/MDN4777K
0
考研数学二
相关试题推荐
已知α1,α2,…,αt都是非齐次线性方程组Ax=b的解,如果c1α1+c2α2+…+ctαt仍是Ax=b的解,则c1+c2+…+ct=______.
函数f(x)=的连续区间是_________.
证明:当x>1时0<(x-1)2.
运用导数的知识作函数y=x+的图形.
设函数f(x)有任意阶导数且f’(x)=f2(x),则f(n)(x)=_______(n>2).
(Ⅰ)设ex+y=y确定y=y(x),求y’,y’’;(Ⅱ)设函数y=f(x+y),其中f具有二阶导数,且f’≠1,求
设α1,α2,…,αs是一组两两正交的非零向量,证明它们线性无关.
随机试题
联系实际说明如何培养健康的情绪。
笼养蛋鸡疲劳症又称为
硬质树脂嵌体牙体预备要求与金属嵌体的区别点
行政复议的期限最长不得超过()日。
水体污染源主要包括()。
(操作员:赵主管;账套:301账套;操作日期:2015年1月31日)选择单据号为0015(单据类型为应收借项)的应收单,生成凭证。
注册税务师从事企业所得税纳税审核代理实务时,直接材料成本的审核一般应从审阅材料和生产成本明细账人手,抽查有关的费用凭证,验证企业产品直接耗用材料的数量、计价和材料费用分配是否真实合理。主要采用的方法描述中不正确的是()。
某投资项目的建设期为0,则直接利用年金现值系数计算该项目内部收益率指标所要求的前提条件是()。
DearMr.Harrison,Itwasapleasurespeakingwithyouonthephonethisafternoon.Iamveryhappytoacceptthepositiono
ANiceCupofTeaTheLegendaryOriginsofTeaA)ThestoryofteabeganinancientChinaover5,000yearsago.Accordingto
最新回复
(
0
)