首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年试题,十三)已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,一1,α)T,β=(3,10,6,4)T,问: (1)a,b取何值时,β不能由α1,α2,α3线性表示? (2)a,b取何值时,β可由α1,α2,α3线性表
(1998年试题,十三)已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,一1,α)T,β=(3,10,6,4)T,问: (1)a,b取何值时,β不能由α1,α2,α3线性表示? (2)a,b取何值时,β可由α1,α2,α3线性表
admin
2019-08-01
36
问题
(1998年试题,十三)已知α
1
=(1,4,0,2)
T
,α
2
=(2,7,1,3)
T
,α
3
=(0,1,一1,α)
T
,β=(3,10,6,4)
T
,问:
(1)a,b取何值时,β不能由α
1
,α
2
,α
3
线性表示?
(2)a,b取何值时,β可由α
1
,α
2
,α
3
线性表示?并写出此表示式.
选项
答案
向量β能否由α
1
,α
2
,α
3
线性表示实质上等价于下述方程组有解或无解的问题:Ax=β,其中[*]从而[*],相应的增广矩阵为[*]利用初等行变换将B化为阶梯形如下,[*]当b≠2时,rA
1,α
2
,α
3
线性表示;当b=2,a≠1时,rA=rB且rA=3,此时方程组Ax=β有唯一解,且相应的行简化阶梯形为[*]因此该唯一解为[*]因此β可由α
1
,α
2
,α
3
唯一表示为β=一α
1
+2α
2
;当b=2,a=1时,rA=rB且rA=2<3,此时方程组Ax=β有无穷解,相应的行简化阶梯形为[*]其导出组的基础解系为(一3,3,1)
T
,原方程组特解为(一1,2,0)
T
,则通解为C(一3,3,1)
T
+(一1,2,0)
T
其中C为任意常数,此时β可α
1
,α
2
,α
3
表示为β=一(3C+1)α
1
+(3C+2)α
2
+Cα
3
解析
一向量是否可由一组两量线性表示与对应的线性方程组是否有解是等同的,若对应的线性方程组无解,则不能线性表示;若对应的线性方程组有唯一解;则可以线性表示,并且表示方法唯一;若对应的线性方程组有无穷多组解,则可以线性表示,并且有无穷多种表示方法.在对线性方程组求解化为阶梯形的过程中,只能用行变换,在化为阶梯形后,对参数a,b讨论时要做到不重不漏.
转载请注明原文地址:https://kaotiyun.com/show/MDN4777K
0
考研数学二
相关试题推荐
设有定义在(-∞,+∞)上的函数:以x=0为第二类间断点的函数是________.
讨论下列函数的连续性并判断间断点的类型:
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(z)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
求函数y=x+的单调区间、极值点及其图形的凹凸区间与拐点.
设求f(x)在点x=0处的导数.
已知α1,α2都是3阶矩阵A的特征向量,特征值分别为-1和1,又3维向量α3满足Aα3=α2+α3.证明α1,α2,α3线性无关.
设f(x)=又a≠0,问a为何值时存在.
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
随机试题
不属于转录后修饰的是
现代流行病学的形成与发展不包括()
水池施工中的抗浮措施有:()。
施工安全技术措施一般要求包括()。
理智型问题客户具有很强的推理能力和判断能力,在深思熟虑后才能决定,善于控制自己的情感,因此理财服务人员在处理理智型客户的投诉时应该()。
近年来,许多发达国家制定了日益严格的进口茶叶农药残留限量标准,导致现在我国很多企业出口的茶叶被通报退回,增加了茶叶出口的难度。有人认为这是设置贸易技术壁垒,也有人认为打铁还需自身硬,请问你怎么看?
中俄《北京条约》
下列描述中,不是线性表顺序存储结构特征的是()。
•Readthememosbelow.•Completetheclaimformontheoppositepage.•Writeawordorphrase(inCAPITALLETFERS)oranumbe
Lookatthegraphbelow.Itshowstheaveragesharepricesofthreecompanies-GrantInternational,HDCUnionandtheLindelGr
最新回复
(
0
)