首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,﹣4,0)T,则方程组A*X=0的基础解系为( ).
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,﹣4,0)T,则方程组A*X=0的基础解系为( ).
admin
2019-06-06
44
问题
设A=(α
1
,α
2
,α
3
,α
4
)为四阶方阵,且α
1
,α
2
,α
3
,α
4
为非零向量组,设AX=0的一个基础解系为(1,0,﹣4,0)
T
,则方程组A
*
X=0的基础解系为( ).
选项
A、α
1
,α
2
,α
3
B、α
2
,α
3
,α
1
+α
3
C、α
1
,α
3
,α
4
D、α
1
+α
2
,α
2
+2α
4
,α
4
答案
D
解析
由r(A)=3得r(A
*
)=l,则A
*
X=0的基础解系由3个线性无关的解向量构成.由α
1
-4α
3
=0得α
1
,α
3
成比例,显然(A)、(B)、(C)不对,选(D).
转载请注明原文地址:https://kaotiyun.com/show/MQJ4777K
0
考研数学三
相关试题推荐
设两台同样的记录仪,每台无故障工作的时间服从参数为5的指数分布,首先开动其中一台,当发生故障时停用而另一台自动开动.求两台记录仪无故障工作的总时间T的概率密度.
设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则()
设f(x)在闭区间[a,b]上连续,常数k>0.并设φ(x)=∫xbf(t)dt—k∫axf(t)dt.证明:(Ⅰ)存在ξ∈[a,b],使φ(ξ)=0;(Ⅱ)若增设条件f(x)≠0,则(Ⅰ)中的ξ是唯一的,且必定有ξ∈(a,b).
已知A是3阶方阵,A的每行元素之和为3,且齐次线性方程组Ax=0有通解k1(1,2,一2)T+k2(2,1,2)T,其中k1,k2是任意常数,α=(1,1,1)T.(Ⅰ)证明对任意的一个3维向量β,向量Aβ和α线性相关;(Ⅱ)若β=(3,6,一3)T,
某企业生产某产品,在单位时间上分摊到该产品的固定成本为c0元.又设在单位时间内生产x件产品的边际成本为ax+b(元/件),a>0,b>0,且均为常数.则单位时间内生产x件产品的成本函数c(x)=___________.
设齐次线性方程组A2×4X=0(*)有基础解系ξ1=(2,3,一1,0)T,ξ2=(1,0,1,一1)T.求齐次线性方程组(**)的通解.
已知非齐次线性方程组A3×4x=b有通解k1(1,2,0,一2)T+k2(4,一1,一1,一1)T+(1,0,一1,1)T,其中k1,k2是任意常数,则满足条件x1=x2,x3=x4的解是()
设直线y=kx与曲线所围平面图形为D1,它们与直线x=1同成平面图形为D2.求此时的D1+D2.
(1)求二元函数f(x,y)=x2(2+y2)+ylny的极值.(2)求函数f(x,y)=(x2+2x+y)ey的极值.-
(2013年)函数f(x)=的可去间断点的个数为()
随机试题
侵袭性损害
与脾的功能有关的是
Ⅲ度烧伤()
乳衄的病因是
在不卖空的情况下,组合降低风险的程度由证券间的关联程度决定。()
在下列菜系中,主要特点为取料不拘一格、物尽所用、重鲜活的是()。
联系自己的亲身感受,谈谈当前班级管理中存在哪些主要问题,应该如何解决这些问题。
发展常模
下表是某商业银行的资产负债表。[对外经济贸易大学2011研]如果利率处于上升通道,你对该银行的资产负债管理有何具体建议?说明理由。
设总体X的概率密度为f(x)=,其中θ>—1是未知参数,X1,X2,…,Xn是来自总体X的一个容量为n的简单随机样本,分别用矩估计法和最大似然估计法求参数θ的估计量.
最新回复
(
0
)