首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若 β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4, 则Ax=β的通解为____________.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若 β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4, 则Ax=β的通解为____________.
admin
2019-08-11
137
问题
已知4阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
1
,α
2
线性无关,若
β=α
1
+2α
2
一α
3
=α
1
+α
2
+α
3
+α
4
=α
1
+3α
2
+α
3
+2α
4
,
则Ax=β的通解为____________.
选项
答案
[*],k
1
,k
2
∈R
解析
由 β=α
1
+2α
2
一α
3
=α
1
+α
2
+α
3
+α
4
=α
1
+3α
2
+α
3
+2α
4
,可知β
1
=
均为Ax=0的解.
由于α
1
,α
2
线性无关,可知r(A)≥2.又由于Ax=O有两个线性无关的解β
1
一β
2
,β
2
一β
3
,可知Ax=0的基础解系中至少含有两个向量,也即4一r(A)≥2,即r(A)≤2.
综上,r(A)=2,Ax=0的基础解系中含有两个线性无关的向量,故β
1
一β
2
,β
2
一β
3
即为Ax=0的基础解系.故Ax=β的通解为
,k
1
,k
2
∈R.
转载请注明原文地址:https://kaotiyun.com/show/MRN4777K
0
考研数学二
相关试题推荐
利用代换u=ycosx将微分方程y"cosx-2y’sinx+3ycosx=ex化简,并求出原方程的通解.
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示.②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也
设f(x)与g(x)在[a,b]上连续,且同为单调不减(或同为单调不增)函数,证明:(b-a)∫abf(x)g(x)dx≥∫abf(x)dx∫abg(x)dx.(*)
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
设C,C1,C2,C3是任意常数,则以下函数可以看作某个二阶微分方程的通解的是
设u=u(x,y),v=v(x,y)有连续的一阶偏导数且满足条件:F(u,v)=0,其中F有连续的偏导数且
(05年)已知函数z=f(x,y)的全微分dz=2xdx一2ydy.并且f(1,1)=2.求f(x,y)在椭圆域D=上的最大值和最小值.
设f’(sin2x)=cos2x+tan2x,则f(x)=_________(0<x<1)
P1=,P2=,则P12009P2-1=_______.
随机试题
椎孔
马致远的《天净沙.秋思》是一篇
某昏迷患者急诊入院,呼吸中有烂苹果味,可拟诊为
商品住宅等经营性用地可以采用协议出让国有土地使用权方式,来获取土地使用权。
分存控制法是()的简化应用。
仲裁裁决作出后,一方当事人就同一纠纷再申请仲裁或者向人民法院起诉的,仲裁委员会或者人民法院不予受理。()
以下说法正确的是()
下列情形中当事人不能取得刑事赔偿权利的是()。
召开一个专家座谈会。会上单位领导与一位专家发生激烈争辩,专家愤然离场,你作为座谈会的组织者该怎么做?
在人际关系问题上我们不要太浪漫主义。人是很有趣的,往往在接触一个人时首先看到的都是他或她的优点。这一点颇像是在餐馆里用餐的经验。开始吃头盘或冷碟的时候,印象很好。吃头两个主菜时,也是赞不绝口。愈吃愈趋于冷静,吃完了这顿宴席,缺点就都找出来了。于是转喜为怒,
最新回复
(
0
)