首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列旋转体的体积V: (Ⅰ)由曲线y=x2,x=y2所围图形绕x轴旋转所成旋转体; (Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.
求下列旋转体的体积V: (Ⅰ)由曲线y=x2,x=y2所围图形绕x轴旋转所成旋转体; (Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.
admin
2018-06-27
77
问题
求下列旋转体的体积V:
(Ⅰ)由曲线y=x
2
,x=y
2
所围图形绕x轴旋转所成旋转体;
(Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.
选项
答案
(Ⅰ)如图3.2,交点(0,0),(1,1),则所求体积为 V=∫
0
1
π[ [*]-(x
2
)
2
]dx=π∫
0
1
(x-x
4
)dx [*] (Ⅱ)如图3.3,所求体积为 V=2∫
0
2πa
yxdx=2π∫
0
2π
a(1-cost)a(t-sint)a(1-cost)dt =2πa
3
∫
0
2π
(1-cost)
2
(t-sint)dt =2πa
3
∫
0
2π
(1-cost)
2
tdt-2πa
3
∫
-π
π
(1-cost)
2
sintdt =2πa
3
∫
0
2π
(1-cost)
2
tdt [*] 2πa
3
∫
-π
π
[1-cos(u+π)]
2
(u+π)du =2πa
3
∫
-π
π
(1+cosu)
2
udu+2π
2
a
3
∫
-π
π
(1+cosu)
2
du =4π
2
a
3
∫
0
π
(1+cosu)
2
du=4π
2
a
3
∫
0
π
(1+2cosu+cos
2
u)du=4π
2
a
3
[*] =6π
3
a
3
. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Spk4777K
0
考研数学二
相关试题推荐
设α=[1,2,3,4]T,β=[3,一2,一1,1]T,A=αβT.(I)求A的特征值,特征向量;(Ⅱ)问A能否相似于对角阵,说明理由.
计算二重积分,其中D在极坐标系统中表示为
已知α1=(1,3,5,一1)T,α2=(2,7,n,4)T,α3=(5,17,一1,7)T,当α=3时,证明α1,α2,α3,α4表示任一个4维列向量.
计算下列积分:
已知向量组与向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a,b的值.
如图,正方形{(z,y)||x|≤1,|y|≤1}被其对角线划分为四个区域Dk(k=1,2,3,4),Ik==
求曲y=x2-2x、y=0、x=1、x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
已知f(x)=arctanx,求f(n)(0).
(2006年)设f(χ,y)与φ(χ,y)均为可微函数,且φ′y(χ,y)≠0.已知(χ0,y0)是f(χ,y)在约束条件φ(χ,y)=0下的一个极值点,下列选项正确的是【】
对数螺线r=eθ在点(r,θ)=处的切线的直角坐标方程为________.
随机试题
お小遣いをもらって子供達は________としていた。
安全事故按其发生的的原因和性质分类,有()。
已切割的牛角棒
下列项目中,属于增值税准予计算扣除进项税额的货物运费金额是()。
小腿动脉出血时可采用的止血方法是()。
在数据库技术中,未提交的随后又被撤销的数据称为()。
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
HumanmaleslivingwiththeirmomsmaynotexpecttohavemuchluckhookingupthisValentine’sDay.【C1】______amongthenorther
层次模型只能表示1:M联系,对表示M:N联系则很困难,而且层次顺序严格,这是该模型的______。
使用VC6打开考生文件夹下的proj1工程目录内的proj1.dsw文件,其中在编辑窗口内显示的主程序文件中定义有Xabc类和主函数main。在程序文本中位于每行”//ERROR*********found*********下面的一行有错误,请加以更正。
最新回复
(
0
)