首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1993年)设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0。证明f(x)在(0,+∞)内有且仅有一个零点.
(1993年)设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0。证明f(x)在(0,+∞)内有且仅有一个零点.
admin
2018-06-30
34
问题
(1993年)设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0。证明f(x)在(0,+∞)内有且仅有一个零点.
选项
答案
证1 在[0,+∞)上,由f’(x)≥k,得[*]即f(x)≥kx+f(0).取[*]有[*]因f(x
1
)>0,由题设f(0)<0,则[*]x
0
∈(0,x
1
)使f(x
0
)=0. 又f’(x)≥k>0,故f(x)严格单调增,所以f(x)在(0,+co)内有且仅有一个零点. 证2 本题的关键是在(0,+∞)上找一点,使f(x
1
)>0.由题设f’(x)≥k可知,曲线y=f(x)应在直线y=kx+f(0)上方,如图2.3,只要求求出直线y=kx+f(0)与x轴的交点[*]则必有f(x
1
)≥0. [*] 事实上 [*] 则f(x
1
)≥0. 若f(x
1
)=0,则x
1
即为f(x)的零点.若f(x
1
)>0,由介值定理知[*]x
0
∈(0,x
1
)使f(x
0
)=0,唯一性与证1相同.
解析
转载请注明原文地址:https://kaotiyun.com/show/MRg4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0,则E∈(a,b),使
设,且f’’(x)>0.证明:f(x)>x.
设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有;
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
(2001年)求
设求实对称矩阵B,使A=B2.
(1998年)确定常数λ,使在右半平面x>0上的向量A(x,y)=2xy(x1+y2)λi一x2(x1+y2!)λj为某二元函数u(x,y)的梯度,求u(x,y).
(1988年)设S为曲面x2+y2+z2=1的外侧,计算曲面积分
(1993年)求级数的和.
[2017年]设薄片型物体S是圆锥面被柱面z2=2x割下的有限部分,其上任一点的密度为μ(x,y,z)=,记圆锥面与柱面的交线为C.[img][/img]求S的质量M.
随机试题
简述一般化学试剂的规格及用途。
生产企业内部的检验检测机构也可以申请资质认定。()
为了丰富城市景观,可以在城市交通型干道的两侧布置部分公共设施。()
某企业承接了一大型水坝施工任务,但企业有该类项目施工经验的人员较少,大部分管理人员缺乏经验,这类属于建设工程风险类型中的()。
2015年初,A制药公司为摆脱经营困境,经股东会讨论决定从其投资方之一的甲个体工商户借款.500万元,同时与公司职工签订借款合同向本公司职工个人借款200万元,共计700万元用于流动资金周转,期限一年。上述借款年利率为7%,利息按月支付,银行同期同类贷款年
根据下面材料回答问题。下列关于2009年各省市普通高中招生数与专任教师数之比的描述,正确的是()。
现今,整个中国发展的劲头很足、步子很快,“一万年太久,只争朝夕”。公众对政府的工作期待很高,这可以理解。然而,发展不可能一蹴而就,想在朝夕之间解决问题更不现实。昨天开始治理污染,今天就要绿水青山;昨天还有两亿农民工,今天都要变成城里人,这不符合认知常识,也
Eagertoseethesecelebrities,she______acceptedtheinvitationtotheparty.
下列选项中,属于三代旁系血亲的是()。
成功在于勤奋,这句话是对的。
最新回复
(
0
)