首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1993年)设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0。证明f(x)在(0,+∞)内有且仅有一个零点.
(1993年)设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0。证明f(x)在(0,+∞)内有且仅有一个零点.
admin
2018-06-30
63
问题
(1993年)设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0。证明f(x)在(0,+∞)内有且仅有一个零点.
选项
答案
证1 在[0,+∞)上,由f’(x)≥k,得[*]即f(x)≥kx+f(0).取[*]有[*]因f(x
1
)>0,由题设f(0)<0,则[*]x
0
∈(0,x
1
)使f(x
0
)=0. 又f’(x)≥k>0,故f(x)严格单调增,所以f(x)在(0,+co)内有且仅有一个零点. 证2 本题的关键是在(0,+∞)上找一点,使f(x
1
)>0.由题设f’(x)≥k可知,曲线y=f(x)应在直线y=kx+f(0)上方,如图2.3,只要求求出直线y=kx+f(0)与x轴的交点[*]则必有f(x
1
)≥0. [*] 事实上 [*] 则f(x
1
)≥0. 若f(x
1
)=0,则x
1
即为f(x)的零点.若f(x
1
)>0,由介值定理知[*]x
0
∈(0,x
1
)使f(x
0
)=0,唯一性与证1相同.
解析
转载请注明原文地址:https://kaotiyun.com/show/MRg4777K
0
考研数学一
相关试题推荐
设φ(x)是以2π为周期的连续函数,且Ф’(x)=φ(x),Ф(0)=0.方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
已知α=[a,1,1]T是矩阵A=的逆矩阵的特征向量,那么a=_______
设f(x)在[0,+∞)上连续,0<a<b,且收敛,其中常数A>0.证明:
设φ(y)为连续函数.如果在围绕原点的任意一条逐段光滑的正向简单封闭曲线l上,曲线积分其值与具体l无关,为同一常数k.如果φ(y)具有连续的导数,求φ(y)的表达式.
(2017年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,证明:方程f(x)=0在区间(0,1)内至少存在一个实根;
(1997年)设f(x)连续,且(A为常数),求φ’(x)并讨论φ’(x)在x=0处的连续性.
(1998年)设f,φ具有二阶连续导数,则
(1994年)曲面z一ez+2xy=3在点(1,2.0)处的切平而方程为____________.
(1995年)设函数Q(x,y)在xOy平面上具有一阶连续偏导数,曲线积分与路径无关,并且对任意t恒有求Q(x,y).
[2001年]设y=f(x)在(一1,1)内具有二阶连续导数,且f’’(x)≠0.试证:对于(一1,1)内任一x≠0,存在唯一的θ(x)∈(0,1),使f(x)=f(0)+xf’(θx)成立;
随机试题
呼吸性酸中毒最先解决的问题是
患者颈部淋巴结肿大时,下列可能性最小的疾病是
下列哪项不符合胸壁疾患所致胸痛的特点是
荷载的类型中,可变作用是指在设计基准期内,其值随时间变化。以下属于可变作用的有()。
所谓职业道德,就是同人们的职业活动紧密联系的符合职业特点所要求的()。
根据下列材料回答问题。2008--2011年,低收入户人均纯收入与上年相比增长最快的年份是()。
设a=2,b=3,c=4,d=5,表达式Nota
Mostofthepioneersoflow-temperaturephysicsexpectedgasestoliquefy,butnoneofthempredictedsuperconductivity.Thisph
PassageFourWhatdoestheword"apprehensively"probablymeaninPara.10?
A、ShecouldchatwithDr.Lee.B、ShefoundDr.Leewassofamous.C、Dr.Leeledsuchasimplelife.D、Dr.Leewassoeasytoget
最新回复
(
0
)