首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
admin
2018-02-07
56
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,一1,a+2,1)
T
,α
2
=(一1,2,4,a+8)
T
。
当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数。 由k
1
β
1
+k
2
β
2
—l
1
α
1
一l
2
α
2
=0,得齐次方程组 [*] 对方程组(3)的系数矩阵作初等行变换,有 [*] 当a≠一1时,方程组(3)的系数矩阵变为[*]。可知方程组(3)只有零解,即k
1
=k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a=一1时,方程组(3)系数矩阵变为[*],解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。 于是 η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
。 所以当a=一1时,方程组(1)与(2)有非零公共解,且公共解是 l
1
(2,一1,1,1)
T
+l
2
(一1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/MTk4777K
0
考研数学二
相关试题推荐
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
用集合的描述法表示下列集合:(1)大于5的所有实数集合(2)方程x2-7x+12=0的根的集合(3)圆x2+y2=25内部(不包含圆周)一切点的集合(4)抛物线y=x2与直线x—y=0交点的集合
证明函数y=sinx-x单调减少.
设有函数试分析在点x=0处,k为何值时,f(x)有极限;k为何值时,f(x)连续;k为何值时,f(x)可导.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
随机试题
Theathletefinallysucceededincoveringthedistanceinaquarter.
任何离子的平衡电位(E)
A.环境质量回顾评价B.环境质量现状评价C.环境质量影响评价D.多要素环境质量综合评价E.大气质量评
CPI指数说法中,错误的是
兴源公司与郭某签订钢材买卖合同,并书面约定本合同一切争议由中国国际经济贸易仲裁委员会仲裁。兴源公司支付100万元预付款后,因郭某未履约依法解除了合同。郭某一直未将预付款返还,兴源公司遂提出返还货款的仲裁请求,仲裁庭适用简易程序审理,并作出裁决,支持该请求。
蔡某出售伪劣奶粉,被消费者赵、钱、孙、李起诉,蔡某应诉答辩后突然失踪。对此法院应当如何处理?(2001年卷三第38题)
关于未成年人被收容教养期间的受教育权,下列说法正确的有()。
设f(x)连续,证明:∫0x[∫0tf(u)du]dt=∫0xf(t)(x-t)dt.
Lookatthetenstatementsforthispart.Youwillhearapassageabout"CreditCardsHistory".Youwilllistentoittwice
Opinionpollsarenowbeginningtoshowanunwillinggeneralagreementthat,whoeveristoblameandwhateverhappensfromnowo
最新回复
(
0
)