首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
admin
2018-02-07
67
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,一1,a+2,1)
T
,α
2
=(一1,2,4,a+8)
T
。
当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数。 由k
1
β
1
+k
2
β
2
—l
1
α
1
一l
2
α
2
=0,得齐次方程组 [*] 对方程组(3)的系数矩阵作初等行变换,有 [*] 当a≠一1时,方程组(3)的系数矩阵变为[*]。可知方程组(3)只有零解,即k
1
=k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a=一1时,方程组(3)系数矩阵变为[*],解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。 于是 η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
。 所以当a=一1时,方程组(1)与(2)有非零公共解,且公共解是 l
1
(2,一1,1,1)
T
+l
2
(一1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/MTk4777K
0
考研数学二
相关试题推荐
[*]由克莱姆法则知,该方程组有惟一解:x1=D1/D=1,x2=x3=…=xn=0.
设f(x)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一点ε,使得
下列方程中有一个是一阶微分方程,它是[].
a为何值时y=ax2与y=lnx相切?
A、0B、1C、-π/2D、π/2A判断间断点类型的基础是求函数在间断点处的左、右极限.
设函数y(x)由参数方程确定,求曲线y=y(x)向上凸的x取值.
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设已知线性方程组Ax=6存在2个不同的解。求λ.a;
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
随机试题
证券研究报告应当由()进行合规审查。Ⅰ.证券业协会Ⅱ.公司合规部门Ⅲ.研究子公司的合规人员Ⅳ.研究部门的合规人员
具有养阴生津功效的药物是
项目的跟踪评价包括项目实施过程中的从立项到项目完成前的各种评价,其中包括()。
甲公司将与乙公司所签合同中的义务转让给丙公司,依据《合同法》的规定()
根据行政强制法律制度的规定,下列各项中,属于行政强制的基本原则的有()。
根据《中华人民共和国民法通则》的有关规定,下列选项中,不适用于特别诉讼时效期间的情形是()。
设a为5,执行下列计算后,b的值不为2的是()。
()提倡自我激励、自我调节的学习、情感教育、真实性评定、合作学习等。
Aseveryschoolboyknows,insectspollinateflowers,whilebirdsandmammalsdisperseseedsbyeatingfruitsortransportingbur
A、Heagreeswiththewoman’schoice.B、Hedoesn’twantspicyfood.C、Hewantsthesaladtobefresh.D、Garlicishisfavoritefl
最新回复
(
0
)