首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
admin
2018-02-07
83
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,一1,a+2,1)
T
,α
2
=(一1,2,4,a+8)
T
。
当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数。 由k
1
β
1
+k
2
β
2
—l
1
α
1
一l
2
α
2
=0,得齐次方程组 [*] 对方程组(3)的系数矩阵作初等行变换,有 [*] 当a≠一1时,方程组(3)的系数矩阵变为[*]。可知方程组(3)只有零解,即k
1
=k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a=一1时,方程组(3)系数矩阵变为[*],解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。 于是 η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
。 所以当a=一1时,方程组(1)与(2)有非零公共解,且公共解是 l
1
(2,一1,1,1)
T
+l
2
(一1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/MTk4777K
0
考研数学二
相关试题推荐
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
设(X,Y)~N(μ1,μ2;δ12,δ22;ρ),利用条件期望E[X|Y]=μ1+(δ1/δ2)ρ(Y-μ2),证明ρX,Y=ρ.
求解下列微分方程:
求在抛物线y=x2上横坐标为3的点的切线方程.
a为何值时y=ax2与y=lnx相切?
设有函数试分析在点x=0处,k为何值时,f(x)有极限;k为何值时,f(x)连续;k为何值时,f(x)可导.
在区问(-∞,+∞)内,方程|x|1/4+|x|1/2-cosx=0
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
设n,元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
αi≠αj(i≠j,I,j=1,2,…,n),则线性方程ATx=B的解是________.
随机试题
抽样误差
粉体学中,用包括粉体自身孔隙和粒子间孔隙在内的体积计算的密度成为
患者,女,60岁。体重50kg,以往无心血管病史,走路不慎,滑入刚溶的石灰水中,两下肢烫伤。该患者在休克复苏中,发现尿少时,首先应作以下检查
在行使()的过程中,评标委员会需要代理招标人行使评标权力,公正、客观、独立地在法律规定与招标文件要求下履行评标职能,以制约招标人权力的扩大与滥用。
根据马尔萨斯的观点,地租是总产品中的剩余部分,产生该剩余的原因有()。
工程造价管理的工作要素主要有( )。
某咨询服务企业(增值税一般纳税人)的下列进项税额,不得从销项税额中抵扣的有()。
下列各项中,不属于固定资产特征的是()。
需求分析报告是企业ERP软件实施选型的主要依据。下列不属于需求分析内容的是()。
认同是在思想、情感、态度和行为上主动接受他人的影响,使自己的态度和行为()。
最新回复
(
0
)