首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
admin
2018-02-07
57
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,一1,a+2,1)
T
,α
2
=(一1,2,4,a+8)
T
。
当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数。 由k
1
β
1
+k
2
β
2
—l
1
α
1
一l
2
α
2
=0,得齐次方程组 [*] 对方程组(3)的系数矩阵作初等行变换,有 [*] 当a≠一1时,方程组(3)的系数矩阵变为[*]。可知方程组(3)只有零解,即k
1
=k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a=一1时,方程组(3)系数矩阵变为[*],解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。 于是 η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
。 所以当a=一1时,方程组(1)与(2)有非零公共解,且公共解是 l
1
(2,一1,1,1)
T
+l
2
(一1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/MTk4777K
0
考研数学二
相关试题推荐
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出定理中的数值ε
求在抛物线y=x2上横坐标为3的点的切线方程.
a为何值时y=ax2与y=lnx相切?
设有函数试分析在点x=0处,k为何值时,f(x)有极限;k为何值时,f(x)连续;k为何值时,f(x)可导.
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
随机试题
Onceuponatimeapoorfarmertakingasackofwheattothemilldidnotknow【56】todowhenitslippedfromhishorseandfell【
A.窜痛胀痛B.突发绞痛C.固定剌痛D.冷痛拘急气闭证的疼痛性质
既舒筋活络,又化湿和胃的祛风湿药物是
患者男性,70岁。高血压患者一直用胍乙啶50mg/日维持治疗,因妻子亡故受刺激得了抑郁症,给丙米嗪50mg/日治疗,结果血压明显升高,最可能的原因是
假如某罪的法定刑为“3年以上10年以下有期徒刑”,下列关于量刑的说法正确的是()
以下()是政策性金融机构的职能。
下列关于保障残疾人合法权益的说法错误的是()。
某乡政府在换届选举时,乙纠集数人,以对选举有意见为由,冲人选举会场,大声叫骂,并把票箱砸毁。乙的行为属于()。
直接标价法(南开大学2000)
A、Tomaketherailwayoperationsafer.B、Toofferpassengersmorecomfortablejourneys.C、Tomeetthedemandofshippinglarger
最新回复
(
0
)