首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,-1,3,0)T,则A*X=0的基础解系为( ).
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,-1,3,0)T,则A*X=0的基础解系为( ).
admin
2021-11-15
38
问题
设α
1
,α
2
,α
3
,α
4
为四维非零列向量组,令A=(α
1
,α
2
,α
3
,α
4
),AX=0的通解为X=k(0,-1,3,0)
T
,则A
*
X=0的基础解系为( ).
选项
A、α
1
,α
2
B、α
2
,α
3
,α
4
C、α
1
,α
2
,α
4
D、α
3
,α
4
答案
C
解析
因为AX=0的基础解系只含一个线性无关的解向量,
所以r(A)=3,于是r(A
*
)=1.
因为A
*
A=|A|E=0,所以α
1
,α
2
,α
3
,α
4
为A
*
X=0的一组解,
又因为-α
2
+3α
3
=0,所以α
2
,α
3
线性相关,从而α
1
,α
2
,α
4
线性无关,即为A
*
X=0的一个基础解系,应选(C).
转载请注明原文地址:https://kaotiyun.com/show/MYy4777K
0
考研数学二
相关试题推荐
已知二元函数f(x,y)满足,作变换,且f(x,y)=g(u,v)若,求a,b.
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)(2)若r(A)≥r(B),则AX=0的解都是BX=0的解(3)若AX=0与BX=0同解,则r(A)=r(B)(4
设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=0与ABX=0同解的充分条件是()。
设a1,a2,...at为AX=0的一个基础解系,Β不是AX=0的解,证明:Β+Βa1,Β+a2,...Β+at线性无关。
设a1,a2,...an为n个n维线性无关的向量,A是n阶矩阵,证明:Aa1,Aa2,...Aan线性无关的充分必要条件是A可逆。
设的一个特征值为λ1=2,其对应的特征向量为ξ1=.求常数a,b,c.
设A为n阶矩阵且r(A)=n-1,证明:存在常数k,使得(A*)2=kA*.
设三角形三边的长分别为a、b、c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并要求求出这三个相应的距离.
设y=y(x)是二阶线性常系数微分方程y’’+Py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限()
设矩阵A,B满足A*BA=2BA-8E,且,则B=_______.
随机试题
肉芽组织中具吞噬能力的细胞有
某公司2005年资产负债表相关数据为存货期初数为4000万,期末数为5000万,流动负债期初为3000万,期末为2500万,期初速动比率为0.8,期末流动比率为1.8,总资产周转率为1.4,总资产为20000万。计算该公司流动资产期初数和期末数,
肾脏是体内重要的内分泌器官,下列哪种内分泌激素不由肾脏所分泌?
选出与MRI信号强度密切相关的细胞
全科医疗的核心服务是
A、果糖二磷酸酶-1B、6-磷酸果糖激酶-1C、HMGCoA还原酶D、磷酸化酶E、HMGCOA合(成)酶参与酮体和胆固醇合成的酶是
创业计划书应具备下列哪些内容()①创业的种类;②资金规划;③人力资源配置;④竞争力分析;⑤目标市场。
生产越发展,物资越丰富,流通对生产的反作用越不明显。()
函属于()。
Teachersneedtobeawareoftheemotional,intellectual,andphysicalchangesthatyoungadultsexperience.Andtheyalsoneed
最新回复
(
0
)