首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:若单调函数f(x)在区间(a,b)内有间断点,则必为第一类间断点.
证明:若单调函数f(x)在区间(a,b)内有间断点,则必为第一类间断点.
admin
2021-11-09
79
问题
证明:若单调函数f(x)在区间(a,b)内有间断点,则必为第一类间断点.
选项
答案
不妨设f(x)在(a,b)内有定义,是单调递增的,x
0
∈(a,b)是f(x)的间断点.再设x∈(a,x
0
),则x<x
0
,由单调递增性知:f(x)<f(x
0
)(为常数),即f(x)在(a,x
0
)上单调递增有上界,它必定存在左极限:f(x
0
一
)=[*]f(x)≤f(x
0
),式中“≤”处若取“=”号,则f(x)在x
0
左连续,反之点x
0
为f(x)的跳跃间断点,同理可证,当x>x
0
时,单调增函数f(x)存在右极限f(x
0
+
)≥f(x
0
),f(x)或在x
0
右连续、或点x
0
为跳跃间断点.综合之,单调增函数f(x)在间断点x
0
处的左、右极限都存在,故若x
0
是f(x)的间断点,则x
0
一定是f(x)的第一类间断点.同理可证f(x)在(a,b)内单调递减的情形.
解析
转载请注明原文地址:https://kaotiyun.com/show/Mgy4777K
0
考研数学二
相关试题推荐
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设f(χ)二阶可导,=1,f(1)=1,证明:存在ξ∈(0,1),使得f〞(ξ)-f′(ξ)+1=0.
设f(χ)在[1,2]上连续,在(1,2)内可导,且f(χ)≠0(1<χ<2),又存在且非零,证明:(1)存在ξ∈(1,2),使得(2)存在η∈(1,2),使得∫12f(t)dt=ξ(ξ-1)f′(η)ln2.
设f(χ)二阶连续可导,且f(χ)-4∫0χtf(χ-t)dt=eχ,求f(χ).
求微分方程y〞-y′+2y=0的通解.
设y(x)为微分方程y"-4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则=_________.
极限=_________.
函数的间断点的个数为_______.
函数f(x)在区间(﹣1,1)内二阶可导,已知f(0)=0,f’(0)=1,且当x∈(﹣1,1)时f’’(x)﹥0成立,则()
随机试题
A、Byputtingitintoactualuse.B、Byfocusingontranslation.C、Byemphasizinggrammar.D、Bycorrectingtheirerrors.A选项均为byd
下列各项中,属于五脏生理特点的是
目标人群失访比例超过多少,会影响健康教育评价,造成偏倚
患者,男性,45岁,胃溃疡史8年。近1个月来上腹不适、疼痛、反酸、嗳气等症状明显加重,体重下降3kg。经胃镜检查确诊为胃癌,拟行胃大部切除术。不属于胃癌病因的是
拱涵回填石采用分层填筑法时,是在20cm黏土保护层外的拱涵两侧各3m及拱顶以上1.8m范围内,选用粒径()cm的混合料,先填两侧至拱脚,再填拱顶至一定高度,然后填拱脚以上的两侧缺口。
根据资源税暂行条例规定,下列说法正确的是()。
某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?()
与唯物主义反映论相反,唯心主义把认识看成是()
Researchonanimalintelligencealwaysmakesmewonderjusthowsmarthumansare.【C1】______thefruit-flyexperimentsdescribed
初期开发的基于文件服务器的局域网,操作系统属于______。
最新回复
(
0
)