首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
admin
2019-08-23
43
问题
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
选项
答案
设f(χ,y)=[*],显然f(χ,y)在点(0,0)处连续,但[*]不存在, 所以f(χ,y)在点(0,0)处对χ不可偏导,由对称性,f(χ,y)在点(0,0)处对y也不可偏导. 设f(χ,y)=[*] 因为[*] 所以f(χ,y)在点(0,0)处可偏导,且f′
χ
(0,0)=f′
y
(0,0)=0. 因为[*],所以[*]f(χ,y)不存在,而f(0,0)=0,故f(χ,y)在点(0,0)处不连续.
解析
转载请注明原文地址:https://kaotiyun.com/show/Q6A4777K
0
考研数学二
相关试题推荐
设矩阵的特征值有一个二重根,求a的值,并讨论矩阵A是否可相似对角化。
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明如果α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有(x+y)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意的x∈(一∞,+∞),f’(x)都存在,并求f(x)。
二阶常系数非齐次线性方程y’’一4y’+3y=2e2x的通解为y=______。
设函数若反常积分∫1+∞f(x)dx收敛,则()
设向量组(I)b1,…,br能由向量组(Ⅱ)a1,…,as线性表示为(b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅱ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设向量组a1,a2线性无关,向量组a1+b,a2+b易线性相关。证明向量b能由向量组a1,a2线性表示。
设奇函数f(x)在[一1,1]上具有二阶导数,且f(1)=1。证明:存在η∈(一1,1),使得f’’(η)+f’(η)=1。
设g(x)在(﹣∞,﹢∞)内存在二阶导数,且f”(x)<0.令f(x)=g(x)﹢g(-x),则当x≠0时()
随机试题
古立克注意组织内部的控制和协调,提出了()
人体每日所需的能量为
阳虚常可致里热亢盛常可致
下列不属于借款合同的主要法律特征是()。
中央银行在运用货币政策进行金融宏观调控时,主要是通过调控()来影响社会经济活动。
幼儿教育与健康教育的总目标是确定幼儿园健康教育目标的根本依据。()
拉美西斯二世
简述第一次世界大战对中国的影响。(2007年统考真题)
Tomanyweb-buildingspiders,mostof【C1】______arenearlyblind,thewebistheiressentialwindow【C2】______theworld:thei
A、Tospreadourkneesandlegs.B、Toputonekneeoneachsideofthebox.C、Tokeepourbackstraight.D、Toputourhandsunder
最新回复
(
0
)