首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X1,…,Xn,Xn+1独立同分布,且P(X1=1)=p,P(X1=0)=1-p,记
设随机变量X1,…,Xn,Xn+1独立同分布,且P(X1=1)=p,P(X1=0)=1-p,记
admin
2017-06-26
68
问题
设随机变量X
1
,…,X
n
,X
n+1
独立同分布,且P(X
1
=1)=p,P(X
1
=0)=1-p,记
选项
答案
EY
i
=P(X
i
+X
i+1
=1)=P(X
i
=0,X
i+1
=1)+P(X
i
=1,X
i+1
=0)=2p(1-p),i=1,…,n, ∴[*]=2np(1-p), 而E(Y
1
2
)=P(X
i
+X
i+1
=1)=2p(1-p),∴DY
i
=E(Y
1
2
)-(EY
i
)
2
=2p(1-p)[1-2p(1-p)],i=1.2,…,n. 若l-k≥2,则Y
k
与Y
l
独立, 这时cov(Y
k
,Y
l
)=0, 而E(Y
k
Y
k+1
) =P(Y
k
=1,Y
k+1
=1) =P(X
k
+X
k+1
=1, X
k+1
+X
k+2
=1)=P(X
k
=0, X
k+1
=1,X
k+2
=0)+P(X
k
=1, X
k+1
=0, X
k+2
=1)=(1-p)
2
p+p
2
(1-p)=p(1-p), ∴coy(Y
k
, Y
k+1
)=E(Y
k
Y
k+1
)-EY
k
EY
k+1
=(1-p)-4p
2
(1-p)
2
, 故[*] 2np(1-p)[1-2p(1-p)]+[*] =2np(1-p)[1-2p(1-p)]+2(n-1)[p(1-p)-4p
2
(1-p)
2
] 2p(1-p)[2n-6np(1-p)+41)(1-p)-1].
解析
转载请注明原文地址:https://kaotiyun.com/show/MkH4777K
0
考研数学三
相关试题推荐
曲线r=3cosθ,r=1+cosθ所围图形的公共部分面积A=_____.
设曲线L位于xOy平面的第一象限内,L上任意一点M处的切线与y轴总相交,交点为A,已知|MA|=|OA|,且L经过点,求L的方程.
极限=__________.
函数,在下列哪个区间内有界?()
在经济学中,称函数Q(x)=A[δK-x+(1-δ)L-x]-(1/x)为固定替代弹性生产函数,而称函数生产函数(简称C-D生产函数).试证明:当x→0时,固定替代弹性生产函数变为C-D生产函数,即有
某厂家生产的一种产品同时在两个市场上销售,售价分别为p1,p2,需求函数分别为q1=24-0.2p1,q2=10-0.05p2,总成本函数为C=35+40(q1+q2),问厂家如何确定两个市场的销售价格能使其获得总利润最大?最大利润为多少?
设周期函数f(x)在(-∞,+∞)内可导,周期为4.又,则曲线y=f(x)在点(5,f(5))处的切线的斜率为().
已知a1=(1,4,0,2)T,a2=(2,7,1,3)Ta3=(0,1,-1,0)T,β=(3,10,6,4)T,问:(Ⅰ)a,b取何值时,β不能由a1,a2,a3线性表示?(Ⅱ)a,b取何值时,β可由a1,a2,a3线性表示?并写出此表示式.
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过a表示为b2=__________.
设随机变量X的概率密度为又随机变量Y在区间(0,X)上服从均匀分布,试求:X,Y的协方差cov(X,Y).
随机试题
对腰方肌起止点的叙述正确的是()。
现代政府公共关系的本质是政府组织和公众之间的()
36岁,男性,畏寒、发热3天,自觉肛管内胀痛,排尿困难,继之肛周发红,出现压痛区。切开后排出脓汁60ml。应诊断为哪种脓肿
蜂窝织炎患处皮肤局部剧痛,呈弥漫性红肿,境界不清,可有显著的凹陷性水肿,初为硬块,后中央变软、破溃而形成溃疡,约()结瘢痕而愈
劳动力市场的制度结构要素包括()。
下列句子中,“要”字意义与其他三项不同的是()。
在预算的实际执行过程及年终的决算中,人们把()视为一种理想的财政平衡的标志。
ThelongandprogressivereignofQueenVictoriacametoaclimaxatatimeofpeaceandplentywhentheBritishEmpireseemedt
•Lookattheformbelow.•Youwillhearamanringingaboutanagreement.To:MrSimpsonFrom:(9)_________________Streamlin
Hisplaniscarefullypreparedandfullofdetails,soitisavery______one.(2011-78)
最新回复
(
0
)