首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设x∈(0,1),证明: (1)(1+x)ln2(1+x)<x2; (2)
设x∈(0,1),证明: (1)(1+x)ln2(1+x)<x2; (2)
admin
2016-01-11
76
问题
设x∈(0,1),证明:
(1)(1+x)ln
2
(1+x)<x
2
;
(2)
选项
答案
(1)令f(x)=(1+x)ln
2
(1+x)一x
2
,则f(0)=0. f’(x)=ln
2
(1+x)+2ln(1+x)一2x,f’(0)=0. [*] 当x>0时,ln(1+x)<x,故f”(x)<0,f’(x)单调减少;f’(x)<f’(0)=0,故f(x)单调减少,从而有f(x)<f(0)=0,即 (1+x)ln
2
(1+x)<x
2
. [*] 由(1)知g’(x)<0,x∈(0,1),故g(x)在(0,1)内单调减少. [*] 故当x∈(0,1)时,有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ml34777K
0
考研数学二
相关试题推荐
设平面区域D由直线x=1,x-y=2与曲线y=围成,f(x,y)是D上的连续函数,则下列选项中的是().
设f(x)为不恒等于零的奇函数,Rf’(0)存在,则函数g(x)=().
设A=,b=,方程组Ax=b有无穷多解.(Ⅰ)求a的值及Ax=b的通解;(Ⅱ)求一个正交变换x=Qy,化二次型f(x1,x2,x3)=xTAx为标准形.(Ⅲ)求一个可逆线性变换将(Ⅱ)中的f(x1,x2,x3)化为规范形.
设函数y(x)是微分方程y’(x)+1/x·y(x)=1/x2(x>0)的解,且y(1)=0.求y(x);
设3维列向量组a1,a2,a3线性无关,向量组a1-a2,a2+a3,-a1+aa2+a3线性相关,则a=()
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求正交矩阵Q,使得Q-1AQ=A.
设随机变量X服从[0,2]上的均匀分布,Y服从参数为2的指数分布,且X与Y相互独立,令Z=X+Y,求EU和DU.
设f(x)在[0,1]上二阶可导,f(0)=0,且证明:存在一点η∈(0,1),使得f”η)=2.
某工厂生产甲、乙两种产品,当这两种产品的产量分别为χ和y(单位:吨)时,总收益函数为R(χ,y)=42χ+27y-4χ2-2χy-y2,总成本函数为C(χ,y)=36+8χ+12y(单位:万元).除此之外,生产甲、乙两种产品每吨还需分别支付排污费2万元,1
设D是以点O(0,0),A(1,2),B(2,1)为顶点的三角形区域,则xdxdy=________.
随机试题
“世问一切事物中,人是第一个可宝贵的,一切物的因素只有通过人的因素才能加以开发利用。”这句话出自()
Haveyoueverbeenstartledbyaloudnoiseorbysomeoneappearingsuddenlybehindyouondarknightorbyasnakeinthegrass
甲状腺大部切除术后最严重的并发症是
女,62岁,偶然发现右乳外上象限1cm×2cm×2cm肿块,质较硬,无压痛,与皮肤粘连,右腋下未及肿大淋巴结。最可能的诊断是
防治硬膜外麻醉引起的低血压最好选用
下列不属于证券交易所交易系统的是()。
(2008年第1题)阅读下面短文,回答问题:有位意大利的朋友告诉我说,除了脏一点、乱一点,北京城很像一座美国的城市。我想了一下,觉得这是实情——北京城里到处是现代建筑,缺少历史感。在我小时候就不是这样的,那时的北京的确有点与众不同的风格。举个例子来说,我
在窗体上画一个名称为Text1的文本框,编写如下事件过程代码:PrivateSubText1_KeyPress(KeyAsciiAsInteger)DimchAsStringch=Chr(KeyAscii)IfNot(ch>="0"
下述关于break语句的描述中,()是不正确的。
Japan’soldimperialarmyneverwentintothefieldwithoutagroupof"comfortwomen"forthetroops.Manymaleofficeworkers
最新回复
(
0
)