首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型F(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3. (1)求二次型f的矩阵的所有特征值; (2)若二次型f的规范形为y12+y22,求a的值.
设二次型F(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3. (1)求二次型f的矩阵的所有特征值; (2)若二次型f的规范形为y12+y22,求a的值.
admin
2014-01-26
114
问题
设二次型F(x
1
,x
2
,x
3
)=ax
1
2
+ax
2
2
+(a-1)x
3
2
+2x
1
x
3
—2x
2
x
3
.
(1)求二次型f的矩阵的所有特征值;
(2)若二次型f的规范形为y
1
2
+y
2
2
,求a的值.
选项
答案
(1)二次型f的矩阵[*] 由[*]=(λ-a)(λ—a+2)(λ-a-1) 得A的特征值为λ
1
=a-2,λ
2
=a,λ
3
=a+1. (2)方法一 由f的规范形为y
1
2
+y
2
2
,知A有2个特征值为正,1个为零. 若λ
1
=a-2=0,即a=2, 则λ
2
=2,λ
3
=3,符合题意. 若λ
2
=a=0, 则λ
1
=-2,λ
3
=1,不合题意. 若λ
3
=a+1=0,即a=-1, 则λ
1
=-3,λ
2
=-1,不合题意. 综上所述a=2. 方法二 由f的规范形为y
1
2
+y
2
2
,知A有合同矩阵[*],其秩为2, 故|A|=λ
1
λ
2
λ
3
=0,于是a=2或a=0或a=-1. 当a=2时,λ
1
=0,λ
2
=2,λ
3
=3,符合题意. 当a=0时,λ
1
=-2,λ
2
=0,λ
3
=1,不合题意. 当a=-1时,λ
1
=-3,λ
2
=-1,λ
3
=0,不合题意. 综上所述a=2. 方法三 由f的规范形为y
1
2
+y
2
2
,知A有2个特征值为正,1个为零. 显然a-2<a<a+1,所以a=2.
解析
本题已知规范形反求参数,实际上相当于告诉了正负惯性指数,而正负惯性指数又可以通过正负特征值进行确定.
转载请注明原文地址:https://kaotiyun.com/show/Mm34777K
0
考研数学二
相关试题推荐
设α为n维单位向量,E为n阶单位矩阵,则()
(06年)设函数f(χ)在χ=0处连续,且=1,则
(11年)已知函数f(u,v)具有二阶连续偏导数,f(1,1)=2是f(u,v)的极值,z=f(χ+y,f(χ,y)).求.
设矩阵A=,β=,且方程组Ax=β无解.(Ⅰ)求a的值;(Ⅱ)求方程组ATAx=ATβ的通解.
[2015年]设矩阵相似于矩阵求a,b的值;
(96年)设矩阵A=(1)已知A的一个特征值为3,试求y;(2)求可逆矩阵P,使(AP)T(AP)为对角矩阵.
[2009年]设对上题中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
(2000年)设A,B是两个随机事件,随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立。
(2007年)设函数y=y(x)由方程ylny—x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
试证明n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式其中αiT表示列向量αi的转置,i=1,2,…,n.
随机试题
治疗因肾虚所致经行泄泻的最佳方剂是
A.疝内容物易回纳入腹腔B.疝内容物不能完全回纳入腹腔C.疝内容物有动脉性血循环障碍D.疝内容物被疝环卡住不能还纳,但无动脉性循环障碍E.疝内容为部分肠壁难复性疝为
按成槽方式对地下连续墙进行分类,不包括( )。
因海关关员的责任造成被查验货物损坏的,进出口货物收发货人或其代理人可以要求海关赔偿。但海关将不予赔偿的情况是:()。
下列不属于我国各级财政部门的预算职权的是()。
(2017年改)某企业为增值税一般纳税人,适用的增值税税率为13%。2019年12月1日,该企业“原材料——甲材料”科目期初结存数量为2000千克,单位成本为15元,未计提存货跌价准备。12月份发生有关甲材料收发业务或事项如下:(1)10日,购入甲材料
2018年9月11日,国家主席习近平在符拉迪沃斯托克和俄罗斯总统普京共同出席中俄地方领导人对话会。习近平主席就未来两国地方合作提出多点建议,主要包括()。①发挥国家引领作用.加强统筹协调②创新合作思路,拓展合作地域③深挖互补优势,突出地方特色
管弦乐《台湾舞曲》是我国作曲家聂耳的代表作。
A.Iwanttocheckin.B.Youmayboardnow.C.I’mafraidyourbagisfourkilosoverweight,A:IsthistherightcounterforCA
SuggestopediaI.IntroductionA.DerivedfromsuggestionandpedagogyB.Acceleratingthelearningspeedtoabout【T1】ofthecon
最新回复
(
0
)