首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型F(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3. (1)求二次型f的矩阵的所有特征值; (2)若二次型f的规范形为y12+y22,求a的值.
设二次型F(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3—2x2x3. (1)求二次型f的矩阵的所有特征值; (2)若二次型f的规范形为y12+y22,求a的值.
admin
2014-01-26
94
问题
设二次型F(x
1
,x
2
,x
3
)=ax
1
2
+ax
2
2
+(a-1)x
3
2
+2x
1
x
3
—2x
2
x
3
.
(1)求二次型f的矩阵的所有特征值;
(2)若二次型f的规范形为y
1
2
+y
2
2
,求a的值.
选项
答案
(1)二次型f的矩阵[*] 由[*]=(λ-a)(λ—a+2)(λ-a-1) 得A的特征值为λ
1
=a-2,λ
2
=a,λ
3
=a+1. (2)方法一 由f的规范形为y
1
2
+y
2
2
,知A有2个特征值为正,1个为零. 若λ
1
=a-2=0,即a=2, 则λ
2
=2,λ
3
=3,符合题意. 若λ
2
=a=0, 则λ
1
=-2,λ
3
=1,不合题意. 若λ
3
=a+1=0,即a=-1, 则λ
1
=-3,λ
2
=-1,不合题意. 综上所述a=2. 方法二 由f的规范形为y
1
2
+y
2
2
,知A有合同矩阵[*],其秩为2, 故|A|=λ
1
λ
2
λ
3
=0,于是a=2或a=0或a=-1. 当a=2时,λ
1
=0,λ
2
=2,λ
3
=3,符合题意. 当a=0时,λ
1
=-2,λ
2
=0,λ
3
=1,不合题意. 当a=-1时,λ
1
=-3,λ
2
=-1,λ
3
=0,不合题意. 综上所述a=2. 方法三 由f的规范形为y
1
2
+y
2
2
,知A有2个特征值为正,1个为零. 显然a-2<a<a+1,所以a=2.
解析
本题已知规范形反求参数,实际上相当于告诉了正负惯性指数,而正负惯性指数又可以通过正负特征值进行确定.
转载请注明原文地址:https://kaotiyun.com/show/Mm34777K
0
考研数学二
相关试题推荐
(2007年)设二元函数计算二重积分,其中D={(x,y)||x|+|y|≤2).
设α为n维单位向量,E为n阶单位矩阵,则()
(2003年)设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证必存在ξ∈(0,3)使f’(ξ)=0.
(88年)过曲线y=χ2(χ≥0)上某点A作一切线.使之与曲线及χ轴围成图形的面积为,求:(1)切点A的坐标.(2)过切点A的切线方程;(3)由上述图形绕z轴旋转而成旋转体体积V.
[2016年]设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max(X1,X2,X3).确定a,使得E(aT)=θ.
(97年)设3阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(一1,-1,1)T,α2=1,-2,-1)T.(1)求A的属于特征值3的特征向量;(2)求矩阵A.
(96年)设矩阵A=(1)已知A的一个特征值为3,试求y;(2)求可逆矩阵P,使(AP)T(AP)为对角矩阵.
(89年)若齐次线性方程组只有零解,则λ应满足的条件是_______.
[2008年]设n元线性方程组AX=b,其中证明行列式|A|=(n+1)an;
设A=。(Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关。
随机试题
简述医学模式转变对护理学的影响。
根据我国《消费者权益保护法》的规定,消费者和经营者发生消费者权益争议的,可以通过以下哪些途径解决?()
社会消费基金包括的项目有()。
以下关于保护贸易政策的表述不正确的是()。
遵守《中华人民共和国教师法》的主体只是教师群体。
2004年11月20日,胡锦涛主席在出席亚太经合组织领导人非正式会议期间,会见了美国总统布什。关于台湾问题,胡锦涛指出,当前台海局势复杂敏感,维护国家的主权和领土完整,是中国的核心利益。中国政府愿尽一切努力争取以和平方式解决台湾问题,但绝不容许“台独”。布
A、 B、 C、 D、 D
设P(A)=P(B)=P(C)=,P(AB)=0,P(AC)=P(BC)=,则A,B,C都不发生的概率为_______.
Ms.Andrewhaddifficultyunderstanding_______thecustomerwastryingtocommunicatetohim.
It’s10pm.Youmaynotknowwhereyourchildis,butthechipdoes.Thechipwillalsoknowifyourchildhasfallenandne
最新回复
(
0
)