首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,一1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,b+3,5)T.问: (1)a,b为什么数时,β不能用α1,α2,α3,α4表示? (2)a,b为什么数时,β可用α1
设α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,一1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,b+3,5)T.问: (1)a,b为什么数时,β不能用α1,α2,α3,α4表示? (2)a,b为什么数时,β可用α1
admin
2017-10-21
35
问题
设α
1
=(1,0,2,3)
T
,α
2
=(1,1,3,5)
T
,α
3
=(1,一1,a+2,1)
T
,α
4
=(1,2,4,a+8)
T
,β=(1,1,b+3,5)
T
.问:
(1)a,b为什么数时,β不能用α
1
,α
2
,α
3
,α
4
表示?
(2)a,b为什么数时,β可用α
1
,α
2
,α
3
,α
4
表示,并且表示方式唯一?
选项
答案
利用秩来判断较简单(见用定理3.7的①和②).为此计算出r(α
1
,α
2
,α
3
,α
4
)和r(α
1
,α
2
,α
3
,α
4
,,β)作比较.构造矩阵(α
1
,α
2
,α
3
,α
4
|β),并用初等行变换化阶梯形矩阵: [*] (1)当a+1=0,而b≠0时,r(α
1
,α
2
,α
3
,α
4
)=2,而r(α
1
,α
2
,α
3
,α
4
)=3,因此β不能用α
1
,α
2
,α
3
,α
4
线性表示. (2)当a+1≠0时(b任意),r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,β)=4,β可用α
1
,α
2
,α
3
,α
4
表示,并且表示方式唯一. (如果a+1=0,而b=0,则r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,β)=2,因此β能用α
1
,α
2
,α
3
,α
4
线性表示,但是表示方式不唯一.)
解析
转载请注明原文地址:https://kaotiyun.com/show/MpH4777K
0
考研数学三
相关试题推荐
设向量组α1,α2,α3,α4线性无关,则向量组().
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得.
证明不等式:xarctanx≥ln(1+x2).
设C1,C2是任意两条过原点的曲线,曲线C介于C1和C2之间,如果过C上任意一点P引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=,求曲线C2的方程.
设n阶矩阵A与对角矩阵合同,则A是().
设为A*的特征向量,求A*的特征值λ及a,b,c和A对应的特征值μ.
设非零n维列向量α,β正交且A=αβT.证明:A不可以相似对角化.
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别为,求Anβ.
求矩阵A=的特征值与特征向量.
设随机变量X服从参数为2的指数分布,令U=,求:(1)(U,V)的分布;(2)U,V的相关系数.
随机试题
构成心左缘的主要是
A.尾蚴B.胞蚴C.囊蚴D.包囊E.卵囊猪小袋纤毛虫的感染阶段是
条件致病菌引起医院内感染的主要原因为
缆索吊装施工法中,缆索吊装设备按用途和作用可以分为()等基本部分组成。
()认为成交量是股市的元气与动力。
局部改变某个科室的职能属于企业组织结构变革的()变革方式。
一位亲眼目睹大桥垮塌的妇女到现在头脑中还经常浮现出那一幕。这属于()。
现代经济中利率的杠杆作用体现在哪些方面?
Windows 98中,可以安装3种类型的网络服务软件,它们分别是Microsoft网络上的文件与打印机共享、NetWare网络上的文件与打印机共享,以及NetWare
Thehunter-gatherertribesthattodaylivelikeourprehistorichuman【M1】______ancestorsconsumeprimarilyavegetabledietsu
最新回复
(
0
)