首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,一1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,b+3,5)T.问: (1)a,b为什么数时,β不能用α1,α2,α3,α4表示? (2)a,b为什么数时,β可用α1
设α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,一1,a+2,1)T,α4=(1,2,4,a+8)T,β=(1,1,b+3,5)T.问: (1)a,b为什么数时,β不能用α1,α2,α3,α4表示? (2)a,b为什么数时,β可用α1
admin
2017-10-21
46
问题
设α
1
=(1,0,2,3)
T
,α
2
=(1,1,3,5)
T
,α
3
=(1,一1,a+2,1)
T
,α
4
=(1,2,4,a+8)
T
,β=(1,1,b+3,5)
T
.问:
(1)a,b为什么数时,β不能用α
1
,α
2
,α
3
,α
4
表示?
(2)a,b为什么数时,β可用α
1
,α
2
,α
3
,α
4
表示,并且表示方式唯一?
选项
答案
利用秩来判断较简单(见用定理3.7的①和②).为此计算出r(α
1
,α
2
,α
3
,α
4
)和r(α
1
,α
2
,α
3
,α
4
,,β)作比较.构造矩阵(α
1
,α
2
,α
3
,α
4
|β),并用初等行变换化阶梯形矩阵: [*] (1)当a+1=0,而b≠0时,r(α
1
,α
2
,α
3
,α
4
)=2,而r(α
1
,α
2
,α
3
,α
4
)=3,因此β不能用α
1
,α
2
,α
3
,α
4
线性表示. (2)当a+1≠0时(b任意),r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,β)=4,β可用α
1
,α
2
,α
3
,α
4
表示,并且表示方式唯一. (如果a+1=0,而b=0,则r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,β)=2,因此β能用α
1
,α
2
,α
3
,α
4
线性表示,但是表示方式不唯一.)
解析
转载请注明原文地址:https://kaotiyun.com/show/MpH4777K
0
考研数学三
相关试题推荐
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aβ1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得。
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
设(1)求PTCP;(2)证明:D一BA—1BT为正定矩阵.
设且A~B.(1)求a;(2)求可逆矩阵P,使得P—1AP=B.
设的逆矩阵A—1的特征向量.求x,y,并求A—1对应的特征值μ.
设A=(1)若ai≠aj(i≠j),求ATX=b的解;(2)若a1=a3a≠0,a2=a4=一a,求ATX=b的通解.
设X1,X2分别为A的属于不同特征值λ1,λ2的特征向量.证明:X1+X2不是A的特征向量.
设3阶方阵A,B满足关系式A-1BA=6A+BA,且A=,则B=________.
随机试题
A.由纤维组织及内皮细胞修复B.由周围的腺上皮细胞修复C.由肉芽组织及周围腺上皮细胞修复D.由周围的鳞状上皮细胞修复胃溃疡愈合
可摘局部义齿人工后牙颊舌径宽度小于天然牙的目的是
城市化水平与经济发展关系的曲线表明,经济发展的前期阶段人均GNP增加一定数量(如100美元),需要相应提高的城镇人口比重的幅度应该()。
原材料账户期初余额为50万元,本期购进原材料30万元,生产领用原材料40万元,则期末账户上的原材料为()万元。
在归整或保存审计工作底稿时,下列表述中正确的是()。
运动负荷就是负荷量,它是由时间、数量和距离组成的。()
某居民违章搭建,严重影响市容。执法人员对他说:“如果你不在规定期限内自行拆除。那么,我们将依法强拆。”该居民回答:“我坚决不同意。”按照居民的说法,下列哪项判断是他同意的?()
私自拆阅邮件或窃听公民电话等通讯内容的行为是侵犯公民()的行为。
马克思主义唯物史观产生前,唯心史观长期占统治地位的根源在于()。
WhathelpsmaketheMiddleAtlanticStatesamajorcenterofinternationaltrade?
最新回复
(
0
)